AN10039

ISP1582/83 Firmware Programming Guide
Rev. 02 — 3 January 2005

Semiconductors

Application note .

Document information

Info Content
Keywords isp1582; isp1583; peripheral controller; usb; universal serial bus
Abstract

This document explains the firmware programming of the ISP1582/83.

PHILIPS

Philips Semiconductors AN1 0039

. ISP1582/83 Firmware Programming Guide

Revision history

Rev Date Description
2.0 20050103 Second release: updated Section 2.6.
1.0 20040603 First release.

Contact information

For additional information, please visit: http://www.semiconductors.philips.com

For sales office addresses, please send an email to: sales.addresses@www.semiconductors.philips.com

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 2 of 45

Philips Semiconductors

AN10039

1. Introduction

ISP1582/83 Firmware Programming Guide

The ISP1582/83 is a Hi-Speed Universal Serial Bus (USB) peripheral controller that
provides a flexible interface for a wide range of microcontrollers. The high-speed

microcontroller interface increases system throughput and reduces processor utilization.
The ISP1582/83 can be configured to function, with a common USB bus enumeration

process, as a Generic Direct Memory Access (GDMA) application or a mass storage
application. This document is divided based on the USB enumeration and the two

supported applications.

Fig 1 shows the ISP1582/83 firmware-programming model.

Mass storage
initialization

Start

ISP1582/83
initialization

usB

Mass storage
process

enumeration

GDMA
initialization

GDMA process

End

Fig 1. Flowchart of the ISP1582/83 firmware-programming model.

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note

Rev. 02 — 3 January 2005

3 0of45

Philips Semiconductors AN1 0039

. ISP1582/83 Firmware Programming Guide

2. ISP1582/83 initialization routine

2.1 Initializing the ISP1582/83 registers

The initialization routine depends on the application targeted for the ISP1582/83. The
routine has most of the initializations common to all applications, except for the DMA
Configuration and DMA Hardware registers that determine the function of the
ISP1582/83. Fig 2 shows the flowchart of the ISP1582/83 register initialization.

Initialize Mode register

Initialize Interrupt
Configuration register

Initialize Interrupt Enable
register

Initialize DMA Configuration
register

Initialize DMA Hardware
register

Initialize endpoint

2.2 Initializing the Mode register

Fig 2. Register initialization.

After the power-on reset, the processor initializes the Mode register (see Table 1:). This
register can be programmed, depending on the user application.

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

4 of 45

Application note Rev. 02 — 3 January 2005

Philips Semiconductors AN1 0039

ISP1582/83 Firmware Programming Guide

Table 1: Mode register: bit allocation
Bit 15 14 13 12 11 10 9 8
Symbol TEST2 TEST1 TESTO reserved DMACLK VBUSSTAT
ON
Reset - - - - - - 0 -
Bus reset - - - - - - 0 -
Access R R R R R R R/W R
Bit 7 5 4 3 2 1 0
Symbol CLKAON SNDRSU GOSUSP SFRESET GLINTENA WKUPCS PWRON SOFTCT
Reset 0 0 0 0 0 0 0 0
Bus reset 0 0 0 0 unchanged 0 0 unchanged
Access R/W R/W R/W R/W R/W R/W R/W R/W
The DMACLKON bit of the Mode register determines whether the clock should be
supplied to the DMA core of the ISP1582/83. Disabling the bit at initialization saves
power. The DMA clock can be switched on when DMA is required using the DMACLKON
bit.
Power can also be saved by disabling clock CLKAON during suspend mode. It is
recommended that you use this power saving mechanism to save power when the
ISP1582/83 is configured to bus-powered applications. Next, set the global interrupt
enable (bit GLINTENA) to enable the interrupt mechanism of the ISP1582/83. The
ISP1582/83 allows you to wake up the system from suspend mode by toggling the chip
select (pin CS_N) of the ISP1582/83.
The ISP1582/83 allows you to design systems to support the sleep mode in which power
to the ISP1582/83 is turned off to save power. The PWRON bit in the Mode register
configures the ISP1582/83 into two modes of operation when it is in the suspend state.
When the bit is set to logic 0, the firmware must issue an unlock command to the
ISP1582/83 before any write operation to a register can be performed. This prevents
accidental writing to registers when the processor wakes up from the power saving
mode.
The SoftConnect™ feature (bit SOFTCT) is used to connect the pull-up resistor to the DP
line of the ISP1582/83. This gives the users complete authority on when to connect and
disconnect from the USB bus. The SOFTCT bit is used together with Vgys (bit
VBUSSTAT) that reflects whether the USB cable is plugged in or out.
2.3 Initializing the Interrupt Configuration register
After setting the Mode register, the Interrupt Configuration register (see Table 2:) is
initialized. This register controls how an interrupt is generated for the control pipe, IN
endpoint and OUT endpoint.
Table 2: Interrupt Configuration register: bit allocation
Bit 7 6 5 4 3 2 1 0
Symbol CDBGMOD[1:0] DDBGMODINI1:0] DDBGMODOUT[1:0] INTLVL INTPOL
Reset 1 1 1 1 1 1 0 0
Bus reset 1 1 1 1 1 1 unchanged unchanged
Access R/W R/W R/W R/W R/W R/W R/W R/W

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note

Rev. 02 — 3 January 2005 5o0f 45

Philips Semiconductors AN1 0039

. ISP1582/83 Firmware Programming Guide

The interrupt generation depends on the type of mode setting specified in the register;
see Table 3:. CDBGMOD is for the control pipe, DDBGMODIN is for the IN pipe, and
DDBGMODOUT is for the OUT pipe. The register sets interrupt to the level or pulse
trigger by using the INTLVL bit. The polarity of the interrupt signal is control by INTPOL.

Table 3: Debug mode settings

Value CDBGMOD DDBGMODIN DDBGMODOUT

00h Interrupt on all ACK and Interrupt on all ACK and Interrupt on all ACK, NYET
NAK NAK and NAK

01h Interrupt on all ACK Interrupt on ACK Interrupt on ACK and NYET

1Xh Interrupt on all ACK and Interrupt on all ACK and first Interrupt on all ACK, NYET
first NAK NAK and first NAK

The typical function of the Interrupt Configuration register is to enable the ACK interrupt.

The following figures show the CATC trace of the ACK interrupt with the red arrows
indicating the interrupt signal that will be generated on the INT pin, when ACK condition

occurs.
ACK
048 18.333 ps

T R bReguest wWalue windex wlength

=1
|34?.23? usI
|533.B33 p=
" Data
0512 bytes OB 36833 ps

Fig 3. CATC capture of setup and OUT ACK interrupt.

The following sample code programs the IN endpoint interrupt to all ACK conditions:
Void Init D14 SFR(void)

{

//Set the control pipe to ACK only interrupt
//Set the IN pipe to ACK only interrupt
//Set OUT pipe to ACK and NYET interrupt

D14 Cntrl Reg.D14 INT CONFIG = 0x54;

}

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 6 of 45

Philips Semiconductors

AN10039

ISP1582/83 Firmware Programming Guide

EHNDP T R BReguest walue [windex| wilenagth ACK
0xB4 1 0 H-=0 |WVID| 0:0C | D000 | 0x047 1 = 0x=4B 16.833 ps
¥ Transzaction ENDP ACK
12409 0x2D 1 o Dx3B 15.933 ps
T Transaction ouT ENDP
13410 087 1 o 116 bytes Dx=Ga 386 167 ys
ENDFP ALK
006 1 0 1[0 bytes 0=4B B67 ps
ENDP " Data
O 1 2 0[512 bytes
ENDF
006 1 2 ||1]512 bytes
Fig 4. CATC capture of IN ACK interrupt.

The OUT endpoint is programmed to all ACK and NYET interrupts as shown in Fig 5.

Fig 5. CATC capture of OUT ACK interrupt.

¥ Transaction auT
12612 087 1 2 11512 bytes 048 22,100 ps
¥ Transaction ouT ENDP ' Data
12614 037 1 2 01512 bytes o 19.567 ps
¥ Tranzaction ouT EHMDP
12615 0:B7 1 2 11128 bytes 92962 ms
T Transaction ENDF 2N T R bRequest walue wdndex wiength ACK
13408 OxBe 1] H-=D |V | D 0=0C Q0000 {00471 G OB 16.833 ps
¥ Tranzaction ENDP ACK
12409 020 1 u] 04D 15933 ps

2.4 |Initializing the Interrupt Enable register

Next is the initialization of the Interrupt Enable register (see Table 4:). Setting the
respective bit to logic 1 will enable the interrupt signal to be generated on the INT pin of
the ISP1582/83. Take into consideration the interrupt service routine because an AND
operation must be performed on the bits in the Interrupt Reason register with the enable
interrupt. The Interrupt Reason register reflects the status bit of the respective event,
even if the enable bit is not set in the Interrupt Enable register.

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note

Rev. 02 — 3 January 2005

7 of 45

Philips Semiconductors

AN10039

ISP1582/83 Firmware Programming Guide

Table 4: Interrupt Enable register: bit allocation

Bit 31 30 29 28 27 26 25 24
Symbol reserved IEP7TX IEP7RX
Reset - - - - - - 0 0
Bus reset - - - - - - 0 0
Access - - - - - - R/W R/W
Bit 23 22 21 20 19 18 17 16
Symbol IEP6TX IEP6RX IEP5TX IEP5RX IEP4TX IEP4RX IEP3TX IEP3RX
Reset 0 0 0 0 0 0 0 0
Bus reset 0 0 0 0 0 0 0 0
Access R/W R/W R/IW R/W R/W R/W R/W R/W
Bit 15 14 13 12 1 10 9 8
Symbol IEP2TX IEP2RX IEP1TX IEP1RX IEPOTX IEPORX reserved IEPO
SETUP
Reset 0 0 0 0 0 0 - 0
Bus reset 0 0 0 0 0 0 - 0
Access R/W R/W R/W R/W R/W R/W R/W R/W
Bit 7 6 5 4 3 2 1 0
Symbol IEVBUS IEDMA IEHS_STA IERESM IESUSP IEPSOF IESOF IEBRST
Reset 0 0 0 0 0 0 0 0
Bus reset 0 0 0 0 0 0 0 unchanged
Access R/W R/W R/W R/W R/W R/W R/W R/W

The following is a sample code for the interrupt service routine:

Void Int Ext 0(void) interrupt 0 using 1
// Read in USB interrupt reason register
USB_Int Flag.VALUE = D14 Cntrl Reg.D14 INT.VALUE;
USB_Int Flag.VALUE &= D14 INT ENABLE;

//Read in DMA interrupt register
DMA Int Flag.VALUE = D14 Cntrl Reg.D14 DMA INT.VALUE;
DMA Int Flag.VALUE &= D14 DMA_INT ENABLE;

//Clear DMA interrupt register

D14 Cntrl Reg.D14 DMA INT.VALUE = DMA Int Flag.VALUE;
/] Clear USB interrupt reason register

D14 Cntrl Reg.D14 INT.VALUE = USB Int Flag.VALUE;

}

2.5 |Initializing the DMA Configuration and Hardware registers

Next, you configure the DMA Configuration register (see Table 5:) and DMA Hardware
register (see Table 6:) to either GDMA or mass storage application. Based on the

application, some associated registers must be programmed.

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note

Rev. 02 — 3 January 2005

8 of 45

Philips Semiconductors

AN10039

ISP1582/83 Firmware Programming Guide

Table 5: DMA Configuration register: bit allocation
Bit 15 14 13 12 1 10 9 8
Symbol reserved ATA DMA_MODE]1:0] PIO_MODEJ[2:0]
MODE
Reset 0 0 0 0 0 0 0 0
Bus reset 0 0 0 0 0 0 0 0
Access R/W R/W R/W R/W R/W R/W R/W R/W
Bit 7 6 5 4 3 2 1 0
Symbol DIS_XFER reserved MODE[1:0] reserved WIDTH
_CNT
Reset 0 0 0 0 0 0 0 1
Bus reset 0 0 0 0 0 0 0 1
Access R/W R/W R/W R/W R/W R/W R/W R/W
Table 6: DMA Hardware register: bit allocation
Bit 7 6 5 4 3 2 1 0
Symbol ENDIAN[1:0] EOT POL MASTER ACK POL DREQ_ WRITE_ READ_POL
POL POL
Reset 0 0 0 0 0 1 0 0
Bus reset 0 0 0 0 0 1 0 0
Access R/W R/W R/W R/W R/W R/W R/W R/W
The ISP1582/83 can be configured to various operation modes, depending on the
combination of the various bits in the DMA Configuration and DMA Hardware registers.
Table 7: illustrates the valid combinations.
Table 7: DMA configuration
ATAmode Master DMA mode PIO mode DIS_XFER Mode Width Description
_CNT
0 0 Not used Not used 0 0 1 GDMA Slave mode
DMA Transfer Counter
DIOR as read strobe
DIOW as write strobe
16-bit data bus
Not used Not used 0 1 1 GDMA Slave mode
DMA Transfer Counter
DIOR as read strobe
DACK as write strobe
16-bit data bus
Not used Not used 0 2 1 GDMA Slave mode

DMA Transfer Counter
DACK as read strobe
DACK as write strobe
16-bit data bus

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

9 of 45

Application note Rev. 02 — 3 January 2005

Philips Semiconductors

AN10039

ATA mode

Master

DMA mode PIO mode

Not used

Not used

Not used

Not used

Not used

Not used

Not used

Not used

Not used

Not used

Not used

Not used

Not used

Not used

ISP1582/83 Firmware Programming Guide

DIS_XFER Mode
_CNT

0 0

0 1

0 2

1 2

Not used Not used
Not used Not used
Not used Not used
Not used Not used
Not used Not used
Not used 0

Not used 1

Not used 2

Width

Description

GDMA Slave mode
DMA Transfer Counter
DIOR as read strobe
DIOW as write strobe
8-bit data bus

GDMA Slave mode
DMA Transfer Counter
DIOR as read strobe
DACK as write strobe
8-bit data bus

GDMA Slave mode
DMA Transfer Counter
DACK as read strobe
DACK as write strobe
8-bit data bus

GDMA Slave mode
EOT mode

DACK as read strobe
DACK as write strobe
8-bit data bus

ATA mode
MDMA Mode 0 strobe timing
PIO mode 0 timing

ATA mode
MDMA Mode 1 strobe timing
PIO Mode 1 timing

ATA mode
MDMA Mode 2 strobe timing
P10 Mode 2 timing

ATA mode
MDMA Mode 2 strobe timing
PIO Mode 3 timing

ATA mode
MDMA Mode 2 strobe timing
P10 Mode 4 timing

GDMA Master mode

DMA Transfer Counter
ATA MDMA 0 Strobe timing
16-bit data bus

GDMA Master mode

DMA Transfer Counter
ATA MDMA 1 Strobe timing
16-bit data bus

GDMA Master mode

DMA Transfer Counter
ATA MDMA 2 Strobe timing
16-bit data bus

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note

Rev. 02 — 3 January 2005

10 of 45

Philips Semiconductors AN1 0039

. ISP1582/83 Firmware Programming Guide
ATA mode Master DMA mode PIO mode DIS_XFER Mode Width Description
_CNT
Not used Not used Not used 0 0 GDMA Master mode
DMA Transfer Counter

ATA MDMA 0 Strobe timing
8-bit data bus

Not used Not used Not used 1 0 GDMA Master mode
DMA Transfer Counter
ATA MDMA 1 Strobe timing
8-bit data bus

Not used Not used Not used 2 0 GDMA Master mode
DMA Transfer Counter
ATA MDMA 2 Strobe timing
8-bit data bus

0 1 Invalid Invalid Invalid Invalid Invalid Invalid Mode

When DIS_XFER_CNT is set to logic 1, the DMA transfer counter is not in use, and the
DMA termination is done using the input signal of pin EOT. This mode is called the EOT
mode. The polarity of pin EOT can be set using the EOT_POL bit in the DMA Hardware
register.

2.6 Initializing the ISP1582/83 endpoint

The endpoint FIFO configuration is done using the Endpoint MaxPacketSize register (see
Table 8:) and the Endpoint Type register (Table 9:), and indexed using the Endpoint
Index register (see Table 10:).

For the same endpoint number, ensure that initialization is done for both the IN and OUT,
even if only one side is used.

Table 8: Endpoint MaxPacketSize register: bit allocation

Bit 15 14 13 12 11 10 9 8
Symbol reserved NTRANSI[1:0] FFOSZ[10:8]

Reset - - - 0 0 0 0 0
Bus reset - - - 0 0 0 0 0
Access R/W R/W R/W R/W R/W R/W R/W R/W
Bit 7 6 5 4 3 2 1 0
Symbol FFOSZ[7:0]

Reset 0 0 0 0 0 0 0 0
Bus reset 0 0 0 0 0 0 0 0
Access R/W R/IW R/W R/W R/W R/W R/W R/W

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 11 of 45

Philips Semiconductors AN1 0039

. ISP1582/83 Firmware Programming Guide

Table 9: Endpoint Type register: bit allocation

Bit 15 14 13 12 11 10 9 8
Symbol reserved

Reset - - - - - - - -
Bus reset - - - - - - - -
Access R/W R/W R/W R/W R/W R/W R/W R/W
Bit 7 6 5 4 3 2 1 0
Symbol reserved NOEMPKT ENABLE DBLBUF ENDPTYP[1:0]
Reset - - - 0 0 0 0 0
Bus reset - - - 0 0 0 0 0
Access R/W R/W R/IW R/W R/W R/W R/W R/W

Table 10: Endpoint Index register: bit allocation

Bit 7 6 5 4 3 2 1 0
Symbol reserved EPOSETUP ENDPIDX[3:0] DIR
Reset - - 0 0 0 0 0 0
Bus reset - - 0 0 0 0 0 0
Access R/W R/W R/W R/W R/W R/W R/W R/W

Initialization of the endpoint is done as depicted by the flowchart in Fig 6.

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 12 of 45

Philips Semiconductors AN1 0039

. ISP1582/83 Firmware Programming Guide

High-speed
or full-
speed

Full-speed High-speed

A 4
Initialize the

Initialize the
—p| Endpoint Index

! Endpoint Index <
to the required to the required
endpoint endpoint
Set the Set the
MaxPacketSize MaxPacketSize of
of the endpoint the endpoint to
to full-speed high-speed
No No
All endpoint

configured?

Yes

Initialize the endpoint
index to the required 14
endpoint

v

Set endpoint type and
enable endpoint No

All endpoint
configured?

Fig 6. Initializing endpoint.

The initialization routine is used when:

e The system is powered up.

o A bus-reset event occurs.

e There is a change from full-speed to high-speed.
The following is a sample code for endpoint initialization:

void Init Endpoint (void)

{

//check if device in full speed state
if (Kernel Flag.BITS.HS FS State == FULL SPEED)

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 13 of 45

Philips Semiconductors

AN10039

ISP1582/83 Firmware Programming Guide

{

//Bulk Out MaxPacketSize Endpoint
D14 Cntrl Reg.D14 ENDPT INDEX = 4;
Dl4_Cntrl_Reg .D14_ENDPT MAXPKTSIZE.VALUE = 0x4000;

//Bulk In MaxPacketSize Endpoint
D14 Cntrl Reg.D14 ENDPT INDEX = 5;
Dl4_Cntrl_Reg .D14_ENDPT MAXPKTSIZE.VALUE = 0x4000;

//Bulk Out Endpoint Type
D14 Cntrl Reg.D14 ENDPT INDEX = 4;
D14 Cntrl Reg.D14 ENDPT TYPE.VALUE = 0x1600;

//Bulk In Endpoint Type
D14 Cntrl Reg.D14 ENDPT INDEX = 5;
D14 Cntrl Reg.D14 ENDPT TYPE.VALUE = 0x1600;

//enable FIFO
D14 Cntrl Reg.D14 ENDPT INDEX = 4;
D14 Cntrl Reg.D14 ENDPT TYPE.VALUE |= 0x0800;

//enable FIFO
D14 Cntrl Reg.D14 ENDPT INDEX = 5;
D14 Cntrl Reg.D14 ENDPT TYPE.VALUE |= 0x0800;

}

//check if device in high speed
if (Kernel Flag.BITS.HS FS State == HIGH SPEED)

{

//Bulk Out MaxPacketSize Endpoint
D14 Cntrl Reg.D14 ENDPT INDEX = 4;

D14 Cntrl Reg.D14 ENDPT MAXPKTSIZE.VALUE = 0x0002;

//Bulk In MaxPacketSize Endpoint
D14 Cntrl Reg.D14 ENDPT INDEX = 5;
Dl4_Cntrl_Reg.Dl4_ENDPT_MAXPKTSIZE.VALUE = 0x0002;

//Bulk Out Endpoint Type
D14 Cntrl Reg.D14 ENDPT INDEX = 4;
D14 Cntrl Reg.D14 ENDPT TYPE.VALUE = 0x1600;

//Bulk In Endpoint Type
D14 Cntrl Reg.D14 ENDPT INDEX = 5;
D14 Cntrl Reg.D14 ENDPT TYPE.VALUE = 0x1600;

//enable FIFO
D14 Cntrl Reg.D14 ENDPT INDEX = 4;
D14 Cntrl Reg.D14 ENDPT TYPE.VALUE |= 0x0800;

//enable FIFO
D14 Cntrl Reg.D14 ENDPT INDEX = 5;

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note

Rev. 02 — 3 January 2005 14 of 45

Philips Semiconductors

AN10039

ISP1582/83 Firmware Programming Guide

D14 Cntrl Reg.D14 ENDPT TYPE.VALUE |= 0x0800;

The initialization of the endpoint is done as shown in Fig 2 to allow the endpoint FIFO
RAM to be configured. Ensure that the total endpoints FIFO size does not exceed 8 kB.

3. ISP1582/83 USB enumeration process

The USB enumeration process can be divided into three categories:
o Setup token with data IN stage; see Section 3.1
o Setup token with data OUT stage; see Section 3.2
o Setup token with no data stage; see Section 3.3.

Besides these categories, there is also a stalling procedure for the endpoint
(see Section 3.4). Special attention must be given when stalling the endpoint of the
ISP1582/83.

The endpoint Index register is used to reference the control endpoint and the setup
endpoint. The setup endpoint is 8 bytes in length. It is used for storing the USB
peripheral request from the host. The firmware only needs to program the EPOSETUP bit
of the ISP1582/83 (see Table 10:) to reference the index to the setup endpoint.

The data from the setup or control endpoint, indexed by the endpoint index is read from
the FIFO using the Data Port register; see Table 11:.

Table 11: Data Port register: bit allocation

Bit 15 14 13 12 11 10 9 8
Symbol DATAPORT[15:8]

Reset 0 0 0 0 0 0 0 0
Bus reset 0 0 0 0 0 0 0 0
Access R/W R/W R/IW R/W R/W R/W R/W R/W
Bit 7 6 5 4 3 2 1 0
Symbol DATAPORTI[7:0]

Reset 0 0 0 0 0 0 0 0
Bus reset 0 0 0 0 0 0 0 0
Access R/W R/W R/W R/W R/W R/W R/W R/W

In the case of writing to the endpoint, the Data Port register is also used for the data
transfer to the control IN endpoint. The control endpoint is controlled by the Control
Function register (see Table 12:) that allows the firmware to clear the data in the OUT
endpoint by using the CLBUF bit. The endpoint FIFO can be validated by either the
Buffer Length register or the VENDP bit in the Control Function register. The Buffer
Length register (see Table 13:) reflects the amount of data in the IN endpoint. As for the
OUT endpoint FIFO, the buffer length is a means for the firmware to autovalidate the
FIFO once the value is reached. It is used when the data to be sent in the IN endpoint is
a short packet.

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note

Rev. 02 — 3 January 2005 15 of 45

Philips Semiconductors

AN10039

Table 12: Control Function register: bit allocation

ISP1582/83 Firmware Programming Guide

Bit 7 6 5 4 3 2 1 0
Symbol reserved CLBUF VENDP DSEN STATUS STALL
Reset - - - 0 0 0 0 0
Bus reset - - - 0 0 0 0 0
Access R/W R/W R/W R/W R/W R/W R/W R/W
Table 13: Buffer Length register: bit allocation

Bit 15 14 13 12 11 10 9 8
Symbol DATACOUNTI[15:8]

Reset 0 0 0 0 0 0 0 0
Bus reset 0 0 0 0 0 0 0 0
Access R/W R/W R/IW R/W R/W R/W R/W R/W
Bit 7 6 5 4 3 2 1 0
Symbol DATACOUNT][7:0]

Reset 0 0 0 0 0 0 0 0
Bus reset 0 0 0 0 0 0 0 0
Access R/W R/W R/W R/W R/W R/W R/W R/W

In the control function, the DSEN bit is for the ISP1582/83 to proceed to the data stage. If
the setup token is with a data OUT stage, the firmware must set the DSEN bit to the
ISP1582/83 for the device to generate an ACK handshake to the OUT endpoint. This bit
also governs the IN endpoint data. An IN endpoint after a setup token with the data IN
stage will not be sent to the USB bus even when the VENDP bit is issued. Therefore, the
DSEN bit must be set for the ISP1582/83 to proceed to the status stage of the setup. The
status stage is achieved by setting the STATUS bit in the Control Function register. On
setting the STATUS bit, the endpoint will generate a zero-length packet to the IN token
and send an ACK for the OUT token. The status stage will not generate the control IN

endpoint interrupt.

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 16 of 45

AN10039

ISP1582/83 Firmware Programming Guide

Philips Semiconductors

3.1 Setup token with data IN stage

Wait for the
setup token
interrupt
No
Setup
token interrupt
occurs
Endpoint Index register: bit allocation
Bit 7 6 5 4 3 2 1 0
Symbol | reserved EPOSETUP ENDPIDX[3:0] DIR Yes
Reset | - - 0 ~ 0 0 o 0 —Y
Busreset | - E 0 0 0 0 0 Initialize the
Access | RW RW RW RW RW RW O~ R RW endpoint index
—~ | tothe §etup
endpoint by
using bit
Data Port register: bit allocation
EPOSETUP (Bit 15 14 13 12 1 10 9 8
Symbol DATAPORT[15:8]
It is not required to read the buffer Read the device / Reoet o 0 0 0 0 0 0 o
length of the setup token buffer because request from the e wa o = o — o =
all USB request is 8 bytes in length and Data Port Bit 7 6 5 4 3 2 1 0
the setup FIFO is also 8 bytes iglength register Symbol DATAPORTIT:0]
Reset 0 0 0 0 0 0 0 0
Bus reset) 0 [0 0 0 [0
Access RW RW RW RW RW RW RW RW
Proceed to Setup token
other setup +—No with data IN -~ Interrupt register: bit allocation
token process ~Bit 31 30 20 2% 7 2 25 2
S?mbel reserved EP7TX EP7RX
Reset ™~ ~ R R . R 0 0
Bus reset B ~- - R N 0 0 0
Yes Yes Access - S~ - - - RIW RW RV
+ Bit 23 22 21 20 19 18 17 16
Initialize the Symbol EP6TX EPGRX EPSTX | EPSRXw = EP4TX | EP4RX EP3TX EP3RX
endpoint index Reset 0 0 0 0 P~ ’ 0 0
to the control IN Bus reset 0 0 0 0 0 ~ o 0
The buffer length and the N Access BT RW RV RW RW RW RAY RW
VENDP bit of the Control endpoint Bit 15 14 13 12 i 10 9 A s
Function register is not required Symbol EP%TX EP2RX EPjTX EP’RX EP?TX EPORX reserved | EPOSETUP
when data length is 64 bytes Set the DSEN Roset - 2 - ’ . 0 : 0
bit of the Control Bus reset 0 0 0 0 0 0 - 0
. Access IV RW RW RW RW RwW - RIW
Fu.ncnon Bit 7 6 5 4 3 2 1 0
reglster to N Symbol VBUS DMA HS_STAT | RESUME SUSP PSOF SOF BRESET
enablethe data| N Reset 0 o 0 0 0 0 0 o
s reset 0 0 0 0 0 0 unzhanged
stage Acce}b\ W RW RAW W RW RW W RwY
~N
. Firmware ~
Set the DSEN bit in the determines the ~
Control Function ;) descriptor ~
register to set the Fill IN endpoint length if P t ~
ength if greater
ISP1582/83 to the data 1064 bytes e ~
stage mode N
Yes 64 bytes
~N
Control Function register: bit allocation ~N
i Bit 7 6 5 4 a2 1 0
for Descriptor Symbol ‘ reserved CLBUF | VENDP DSEN STATUS STALL
Wait for the length > Reset | 0 0 0 0
IN token ACK 64 bytes Bt | : N A A —
interrupt Access ‘ RW RW RW RW RW RW RW RW
/
No - /
Yes - /
Fill the IN endpoint Fill the IN endpoint ~ /
Next block with the partial data with the device ~ J/
of data > 64 bytes No-» anq set the VENDP reguest data by - When the buffer length is y
bit of the Control using the buffer |~ used. the VENDP bit of the
Function register | |length or through the Control Function registerAs
\(/DENtDFI’ lt:"t oft.the not required and vice ¥ersa.
ontrol Function
register Setée
STATUS bit of
N token Initialize the the Control 2‘: doct‘ilr-]rt
ACK interrupt endpoint index Function |] inte?ru t End
P to the control register to P
occur . ! generated for the
OUT endpoint terminate the
STATUS stage
setup token
No with data IN
Fig 7. Setup token with data IN stage.

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note

Rev. 02 — 3 January 2005

17 of 45

Philips Semiconductors

AN10039

ISP1582/83 Firmware Programming Guide

3.2 Setup token with data OUT stage

Wait for the setup
token interrupt

Yes

L

Initialize the
endpoint index to

-

the setup endpoint —

It is not required to read back the
buffer length of the setup token buffer
because all USB request is 8 bytes in
length and the setup FIFO is also 8

bytes in length

Endpoint Index register: bit allocation

b n bt Bit —F e 6 5 4 3 2 1 0
y USIng | Symbol | reserved EPOSETUP ENDPIDX[3:0] DIR
EPOSETUP Reset | 0 0 0 0 [0
Bus reset | 0 0 0 0 [0
¢ Access | RW RW RW RW RW RW RW RW
Read the device
request from _the [~ MData Port register: bit allocation
Data Port register Bit 15 14 13 12 1 10 9 8
Symbol DATAPORT([15:8]
Reset 0 0 0 0 0 0 0 0
Bus reset 0 0 0 0 0 0 0 0
Proceed to other Access RW R RW RW RV RW RW RV
setup token |[«No token with data Bit 7 6 5 4 3 2 [0
process Symbol DATAPORT(7:0]
Reset 0 0 0 0 0 0 0 0
Bus reset 0 0 0 0 0 0 0 0
Yes Access RW RW RW RW RIW RW RW RW
Y
Initialize the
endpoint index to
the control OUT
endpoint
* Control Function register: bit allocation
Set the DSEN bit Bit 7 6 5 4 3 7 1 0
in the Control L M)OI_L — feserved ___ |_CLBUL___VENDP . DSEN STATUS STALL
F R K Reset | - 0 0 0 40 0
unction register bus st | . . 0 h h) h
Access | RW RW RW RW RW RW IR*W RW
I
OUT token /
ACK interrupt /
occurs /
Yes /
v No /
Check the endpoint
data length by using /
the Buffer Length
/| register and start /
/ reading the OUT /
/ data
/ initalze the |
Check if all OUT All OU Yesl endpoint index to
token is received eceive! es the control IN /
endpoint /
7 W 0 0 0 Set the STATUS
oATACOUNTIIS 3] . .
0 o o 0 0 bit of the Control No IN endpoint
Busrosat | 0 o o o o o o 0 . . .
Access | mw R R W RW RwW AW R Function register interrupt
- | i T k ° to terminate the generated for
o 0 B e ° . . H setup token with the status stage
Accoss | RW RV RW RW RW RW RW RW

Fig 8. Setup token with data OUT stage.

data OUT

End

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note

Rev. 02 — 3 January 2005

18 of 45

Philips Semiconductors

AN10039

3.3 Setup token with no data stage

ISP1582/83 Firmware Programming Guide

Setup

Endpoint Index register: bitallocation A A token interrupt
Bi 1 6 5N 3 2 1 0 ocours
Symbol faserved EPOSETUP \ ENDPIDX[3.0] DR

Reset - - 0 0 0 \ 0 0 0

Bl | - - 0 0 0 0~ 0 ¢ Y‘;S
Access | RW RW W RWRWRW ORI RW Initialize the
o~ endpoint index to
N the setup endpoint
by using bit
EPOSETUP
Read the device /
request from the
Data Port register
Proceed to other
setup token 4—No
process

Yes

v

Initialize the endpoint
index to the control IN
endpoint

A

Wait for the
setup token
interrupt T
¢ No

Set the STATUS bit of the
Control Function register
to terminate the setup
token without data

/

A

No IN endpoint interrupt

generated for the status
stage

End

Fig 9. Setup token with no data stage.

It is not required to read back the buffer
length of the setup token buffer because all
USB request is 8 bytes in length and the
setup FIFO is also 8 bytes in length

Data Port register: bit allocation

Bit 15 14 13 12 1 10 9 8
Symbol | DATAPORT[58]
Reset | 0 0 0 0 0 0 0 0
Busreset | 0 0 0 0) 0 0 0
Access | RW R/ R W RW R RV RW
Bit 7 6 5 4 3 2 1 0
Symbol | DATASORT]T 0]
Reset | 0 0 0 0) 0 0 0
Busresat | 1 0 0 0 0 0 0 0
Access | RW R RW W RW R RV RW
Control Function register: bil allocation
/ Bit 7 § 5 4 3 2 1]
Symbol | raserved CLBUF | VENDP DSEN | STATUS | STALL
Resst |) 0) 0)
Busrosot | - . R) 0) 0)
Access | RIN W RV W RN W RIN W

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note

Rev. 02 — 3 January 2005

19 of 45

Philips Semiconductors

AN10039

ISP1582/83 Firmware Programming Guide

3.4 Stalling setup token

Wait for the
setup token =
interrupt

No

[Endpoint index register: btalocation

Bit 7 6 5 4 3 2

symool | rasevied EPOSETUP g ENDP X(20]

Ressl | - - 0 N ¢ 0
~.

Busreset. |] C ~ 0

Aceess | 2w RN RV RN R G RW

Setup
token interrupt
occurs

Initialize the
~ endpoint index to
~ the setup
endpoint by
using bit
EPOSETUP

Read the device
request from the
DataPort [~

register [Data Port register: bit allocation
Bit 15 14 13 12 " 10 9 8
Symbol DATAPORT[15:8]
Reset 0 0 0 0 0 0 0 0
Bus reset 0 0 0 0 0 0 0 0
Proceed to setup Access. RW RW RW RW RW RW RW RW
Bit 7 6 5 4 3 2 1 0
token process Symbol DATAPORT[7:0]
Reset 0 0 0 0 [0 0 0
Bus reset 0 0 0 0 0 0 0 0
Access RW RW RW RW RW RW RW RW
Set the STALL bit
of the Control
Function register ~.
~
to stall the ~
dpoint >~
endp! -
~
~ ~
Host receives ~_
stall and will ~
send the clear ~o
~
feature reqyest g
to the device >
[Control Function register: bit allocation ~A
n Bt 7 & 5 4 3 2 1 0
Deylce Syinbol | tesarved CLBUF WVEND? CSEN STEUS STALL
receive the Rest | 0 0 0 3
clear feature Busreset | - 0 0 [1
token Acosss | R Rl RV W R gw” RW R
e
_ r
Set the -
Endpoint 2
Index register P
to the stalled i
i e
[Endpoint Type Togistar: Bit alocalion endpoint -
Bit 15 14 13 12 1" 10 9 8 - -
Symbol reserved P g
e Endpoint is P
Busrosel | - . . . - . - - unstalled by |~
Acess | Rw Rw Rw Rw __ RW __ RwW __ RW AW :
Bit 7 6 5 4 3 2 0 Clearlng the
Symbol reserved NOEMPKT | ENABLE = DBLBUF ENDPTYP(10] STALL bit
Reset - o o o o 0
Busroset | - . . 0 B < o b
Acess | RW RW_ RW_ RW___ RW __ RWN, RW AW Disable and
<
~ enable by
N clearing and

N setting the

ENABLE bit in the

Control Function
register

Set the DMA
endpoint index to the
stalled endpoint and

issue a CLEAR
BUFFER command
to the DMA
Command register

End

Fig 10. Stalling setup token.

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note

Rev. 02 — 3 January 2005

20 of 45

Philips Semiconductors

AN10039

ISP1582/83 Firmware Programming Guide

4. Mass storage application

After successful enumeration, the respective device drivers come into play. For a mass
storage application, the firmware must conform to the USB Mass Storage Class Bulk-
Only Transport Specification and the ATA/ATAPI protocol. The host sends 31 bytes
Command Block Wrapper (CBW). The ATAPI command is embedded in the CBW.

In the case of an ATAPI device, for each CBW received the ATAPI packet command is
issued to the device, followed by the ATAPI command in the CBW.

In the case of an ATA device, the ATAPI command in the CBW must be translated into
ATA command, before issuing to the device. The ATAPI command phase is followed by
an optional data phase, which is followed by a status phase. If the command is
successfully completed, the firmware has to report good status in the status field of the
13-byte Command Status Wrapper (CSW).

See Table 14: and Table 15: for CBW and CSW, respectively.

Table 14: Command Block Wrapper

Bit 7 6 5 4 3 2 1 0
Byte
30 to 15 (1Eh to OFh) CBWCB
14 (OEh) reserved (0) bCBWCBLength
13 (ODh) reserved (0) bCBWLUN
12 (0Ch) bmCBWFlags
11 to 8 (0Bh to 08h) dCBWDataTransferLength
7to4 dCBWTag
3t00 dCBWSignature
Table 15: Command Status Wrapper
Bit 7 6 5 4 3 2 1 0
Byte
12 (0Ch) bCSWStatus
11 to 8 (0Bh to 08h) dCSWDataResidue
7to4 dCSWTag
3t00 dCSWSignature

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note

Rev. 02 — 3 January 2005 21 of 45

Philips Semiconductors AN1 0039

. ISP1582/83 Firmware Programming Guide

4.1 Mass storage protocol

Bulk-only mass storage protocol ATA and ATAPI protocol

Start

'

y

Check if the OUT

token is 31 bytes
No

CBW received? Yes ‘
Process the CBW
and issue command
to the drive

i

Data IN or OUT
process

v

Determine the
status of the drive |~

Data stage
required

< Yes

No

Status error? No

Y

Yes
v
Report CSW with Report CSW with
error status good status

Stop

' A

Fig 11. Mass storage protocol.

4.1.1 Extracting Command Block Wrapper
1. Initialize the Endpoint Index register to the respective OUT endpoint.

2. Read the Buffer Length register. A buffer length of 31 indicates a command packet is
in the buffer.

3. Read the Data Port register to extract the CBW.

4. Check for valid CBW signature in the command block.
If the CBW signature is valid, the command is issued to the ATA or ATAPI device.
For an invalid command block, the respective OUT endpoint is stalled.

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 22 of 45

Philips Semiconductors AN1 0039

. ISP1582/83 Firmware Programming Guide

4.1.2 Handling CBW for ATA and ATAPI device

1. Initialize the drive select register (1F6) to the master or slave, based on the device
present.

2. Initialize the Error or Feature register to 1 for a DMA transfer.

3. Initialize the ATAPI Byte Count LSB and ATAPI Byte Count MSB registers to the
number of bytes to be transferred as specified in the CBW.

4. The ATAPI packet command is issued to the device by writing the Command or
Status register.

5. Issue the 12-byte command block in CBW to the Task File Data register.
6. Check for the next phase.

If CBW.dCBWDataTransferLength is zero, then the next phase is status. If
CBW.dCBWDataTransferLength is non-zero and USB_CBW.bmCBWFlags is 0x80, then
the next phase is read. If CBW.dCBWDataTransferLength is non-zero and
USB_CBW.bmCBWFlags is not equal to 0x80, then the next phase is write.

7. The read or write phase is followed by the status phase.

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 23 of 45

Philips Semiconductors

AN10039

No

ISP1582/83 Firmware Programming Guide

Initialize the Drive or Select register to master or
slave
Initialize the Error or Feature register to one for
DMA
Initialize ATAPI byte count LSB and MSB

v

Write the ATAPI packet command to the
Command or Status register
Write 12-byte command in CBW to the Task
File Data register

CBW.dCBWDataTransferLength
not equal to zero

Yes

CBW.bmCBWFlags == 0x80

Yes

$ N

ATAPI Write
Phase

ATAPI Read
Phase

Fig 12. Handling CBW for ATAPI device.

4
ATAPI Status phase

\ 4

Stop

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note

Rev. 02 — 3 January 2005

24 of 45

Philips Semiconductors

AN10039

ISP1582/83 Firmware Programming Guide

Initialize the Endpoint Index register to the OUT
endpoint
Initialize the DMA Transfer Counter register to
CBW.dCBWDataTranferLength
Write to the DMA Command register with the DMA or
PIO write command

——Yes—

Y

CMD_INTRQ_OK ==
AND
INTRQ_PENDING ==

Bits CMD_INTRQ_OK and
INTRQ_PENDING refrr to the
variable to which the DMA Interrupt
Reason register is copied in the
interrupt routine

DMA Interrupt Reason register: bit allocation

Edt 15 14 13 12 1 10 9 8
TESTA resarvad SIS, EXT_EOT | INT_EOT | INTRO, oA,

Partial transfer

Yes

|

DMA Command
register = DMA_FLUSH
set transfer error flag

| ETOR PENDIWNG | XFER_OK
Rt | [+] [] [1] [:] a
No Busrosol | - : -]] T] [
% Anness | R " R R W L AW W
=13 7 [3 4 E] 2 1 []
Read the DMA transfer counter to check for partial Bmed | et e =T vl T
transfer Rt | O]]]]]
A nonzero value indicates partial transfer LN TR NP P S =
CMD_INTRQ_OK ==
AND No
INTRQ_PENDING ==
Y‘js CMD_INTRQ_OK ==
AND No
Clear INTRQ_PENDING INTRQ_PENDING == L
Read the Command or Status Task Yes
File register Clear
i CMD_INTRQ_OK
Clear CMD_INTRQ_OK Yes

Clear INTRQ_PENDING

CMD_INTRQ_OK ==
AND
INTRQ_PENDING ==

Clear CMD_INTRQ_OK

No

|

Clear CMD_INTRQ_OK
Clear INTRQ_PENDING

Fig 13. ATAPI write phase.

v
Stop

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note

Rev. 02 — 3 January 2005 25 of 45

Philips Semiconductors

AN10039

ISP1582/83 Firmware Programming Guide

Initialize the Endpoint Index register to the IN
endpoint
Initialize the DMA Transfer Counter register to
CBW.dCBWDataTransferLength
Write to the DMA Command register with the DMA or
PIO Read command

CMD_INTRQ_OK ==
AND
INTRQ_PENDING ==

No
v

Read the DMA transfer counter to check for partial
transfer. A nonzero value indicates partial
transfer.

CMD_INTRQ_OK ==
AND

DMA Interrupt Reason register: bit allocation

Bits CMD_INTRQ_OK and

INTRQ_PENDING are from a variable
to which the DMA Interrupt Reason
register is copied in the interrupt
routine

INTRQ_PENDING ==

Yes

v

Clear INTRQ_PENDING
Read the Command or Status Task
File register

Yes Partial transfer

!

DMA command regiser
=DMA_FLUSH
set transfer error flag

at 15 14 17 12 " 10 9 a
Symesd TEST3 resar COMA_ | EXT_EOT | INT_EDT | INTRO [
ETOR PENDING | NFER_OK
Rt -] [] [] Q 1
Bus roset - -] [] [] Q 1
Acooas R " R AW W R R W
at T & & 4 El 2 1 [
Symbad rasarved READ 1FD ESY. TF_RO oD rasarved
DOME DOhE MNTRO_OK
Rt Q [] []] [] []] -
Bus roset Q [] []] [] [] -
Ao AW R R AW W R I W
No
CMD_INTRQ_OK ==
AND No
INTRQ_PENDING == ¢
Clear

Yes

CMD_INTRQ_OK

CMD_INTRQ_OK ==

Clear CMD_INTRQ_OK
Clear INTRQ_PENDING

AND
INTRQ_PENDING ==

Clear
CMD_INTRQ_OK

<
<

No

v

Clear CMD_INTRQ_OK
Clear INTRQ_PENDING

Fig 14. ATAPI read phase.

Application note

Rev. 02 — 3 January 2005

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

26 of 45

Philips Semiconductors AN1 0039

. ISP1582/83 Firmware Programming Guide

@ Bits INTRQ_PENDING and

CMD_INTRQ_OK refer to the variable to
which DMA Interrupt Reason register is
copied in the interrupt routine

Yes——m—————— P
Y

CMD_INTRQ_OK == DMA Interrupt Reason register: bit allocation {
AND . .
— ED & T (] 7] Tl 10 B O
INTRQ_PENDING == Symbol | TESTI rosarad COMA_ | EXT_EOT | INTEDT | INTRO oM,
STOP PENDING | NFER_CK
Rt | G 0 T B 1
Buus el | - - g [] B 1
Ao | R [i R AW R [AW
No i 7 i 5) 3 z 7 T
Symbol | rasarval READIFD| ESY_ | TFRO. | OMO. | resenad
DOWE | DOME | NTROOK
Rt | © 1 o E [o B
(] 1 0 B [0 @
|

INTRQ_PENDING ==
AND
CMD_INTRQ_OK ==

AW RW R AW R R R R

Yes

)

Clear INTRQ_PENDING
Read the Command or Status
Task File register No

INTRQ_PENDING ==
AND
CMD_INTRQ_OK ==

Clear CMD_INTRQ_OK

Clear INTRQ_PENDING
Clear CMD_INTRQ_OK

INTRQ_PENDING ==
AND
CMD_INTRQ_OK ==

Yes

v

Clear INTRQ_PENDING
Clear CMD_INTRQ_OK

< ‘ <
<

A

Read alternate Status or Device
Control Task File register

Task File register 3F6 (address: 4EH): bit allocation

Bit 7 6 5 4 3 2 1 0
. Symbol | alternate status/command (ATA or ATAPI)

Alternate Status or Device Restt | 0 o 0 o f o f o

Control Task File register Bustesel | 0 0 0 0 0 0] 0 0

AND 0x01 == NO Access | RW RW RW RAW RW R RW RW

Yes

}

Set Error_Occur flag Reset Efll';ogr_Occur

Fig 15. ATAPI status phase.

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 27 of 45

Philips Semiconductors

AN10039

41.3

41.4

41.5

ISP1582/83 Firmware Programming Guide

Handling invalid CBW
A command block is invalid if it has an invalid CBW signature.
1. Initialize the Endpoint Index register to the respective OUT endpoint.

2. Set the STALL bit in the Control Function register. When the host receives a stall, it
will send a clear feature command. Wait for the setup token interrupt for the clear
feature.

3. Initialize the Endpoint Index register to the respective OUT endpoint, and clear the
STALL bit in the Control Function register.

4. Set and reset the ENABLE bit in the Endpoint Type register. This will reset the data
toggle.

5. Initialize the Endpoint Index register to 1 and set the STATUS bit in the Control
Function register

6. Wait till the EPOTx interrupt is received.
7. Wait for the EPOSETUP interrupt, for the bulk-only mass storage reset command.

8. Initialize the Endpoint Index register, by setting the EPOSETUP bit in the Endpoint
Index register.

9. Read the Setup buffer and reinitialize the ATA or ATAPI device, for a valid mass
storage reset command.

Handling error

If the Error_Occur flag or transfer_error flag is set, error must be handled, by stalling the
respective endpoint involved in the transfer.

o For the data OUT transfer, the respective OUT endpoint is stalled.
e For the data IN transfer, the respective IN endpoint is stalled.
e Clear the Error_Occur and transfer_error flag.

Handling CBW for an ATA device
CBW contains the ATAPI command embedded in the command block.

For an ATA device, the ATAPI packet command must be translated into an ATA
command, before issuing to the device. The CBWCDB|0] field in the CBW contain the
ATAPI command and the remaining field contains the command parameters. Based on
the ATAPI command, the corresponding ATA command is selected and issued to the
device.

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note

Rev. 02 — 3 January 2005 28 of 45

Philips Semiconductors

AN10039

l—Yes

Handle ATA inquiry

Is CBWCDB [0] ==
READ_10 CMD

Ves Is CBWCDB [0] ==

r

Handle ATA
READ_CAPACITY

s

Is CBWCDB [0] ==

No

Is CBWCDB [0] ==

lers

Handle ATA
REQUEST_SENSE

No

Is CBWCDB [0] ==

No

Is CBWCDB [0] ==

Handle ATA
MODE_SENSE_06

Fig 16. Handling ATA Command Translator.

READ_CAPACITY CMD

READ_FORMAT_CAPACITIES CMD

REQUEST_SENSE CMD

MODE_SENSE_10 CMD

START_STOP_UNIT/MODE_SENSE_06/
MODE_SELECT_06 CMD

ISP1582/83 Firmware Programming Guide

Is CBWCDB [0] ==

WRITE_10 CMD Yes

v
Yes Handle ATA
v WRITE_10 CMD

No

Is CBWCDB [0] ==
TEST_UNIT_READY CMD

Yes

’

Error_Code.SENSE_KEY =0
Error_Code.ASC =0
Error_Code.ASCQ =0
Reset Error_Occur flag

Yes
Handle ATA
READ_FORMAT-
CAPACITIES
CBW.Length != 0 AND
BW.dCBWFlags == 0x8
Initialize the Endpoint Index
register the IN endpoint
v Validate the endpoint
esj No
Handle ATA ‘—‘
MODE_SENSE_10
h 4 .

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note

Rev. 02 — 3 January 2005 29 of 45

Philips Semiconductors

AN10039

slave based on the device present
Initialize the Endpoint Index register to the respective
IN endpoint

Initialize the drive select Task File register to master or

Initialize the DMA transfer counter = 512
Initialize the Byte count Task File register = 512
Issue ATA IDENTIFY DEVICE command by writing to
the Command or Status Task File register

INTRQ_PENDING ==
AND

ISP1582/83 Firmware Programming Guide

Bits INTRQ_PENDING, CMD_INTRQ_OK
and READ_1FO0 are from a variable to
which DMA Interrupt reason register is
copied in the interrupt routine

Y

CMD_INTRQ_OK ==

Write values 0x00, 0x00, 0x00, 0x01, Ox1F,
0x00 to the Data Port register
Bytes_Transferred_Count =
CBW.dCBWDataTransferLength

No

L

INTRQ_PENDING = 0
CMD_INTRQ_OK = 0

!

DMA Command register = READ_1F0

READ_1F0 = 0

Read to the Data Task File register (LSB) 512 times
and store the Model number in the identify device

!

Write to the Data Port register 0x00, 0x00, 0x00, 0x01,
0x1F, 0x00, 0x00, 0x00 and the Model number
Validate the data using VENP in the Control Function
register
Bytes_Transferred_Count =
CBW.dCBWDataTranferLength

<
<

DMA Interrupt Reason register: bit allocation

N

Bit 15 14 13 12 1 10

Symbol TEST3 reserved GDMA._ EXT_EOT INT_EOT INTRQ_ DMA_
STOP PENDING | XFER_OK

Reset 0 0 0 0 0

Bus reset - - - 0 [0 0 0

Access R R R RW RMW RW RW RW

Bit 7 6 5 4 3 2 1 0

Symbol reserved READ_1FO BSY_ TF_RD_ CMD_ reserved

DONE DONE INTRQ_OK

Reset 0 0 0 0 0 0 0|

Bus reset Q 0 0 0 0 0 0

Access RMWY RW RW RW RW RW W

Task File register functions

Task file ATA function ATAPI function
1F0 data (16-bits) data (16-bits)
1F1 error/feature error/feature
1F2 sector count interrupt reason
1F3 sector number/LBA[7:0] reserved

1F4 cylinder low/LBA[15:8] cylinder low
1F5 cylinder high/LBA[23:16] cylinder high
1F& drive/head/LBA[27:24] drive select

1FT command status/command
3F6 alternate status/command alternate status/command
3F7 drive address reserved

A
Stop

Fig 17. Handling ATA_INQUIRY.

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note

Rev. 02 — 3 January 2005

30 of 45

Philips Semiconductors

AN10039

ﬁNo

Initialize the Endpoint Index
register to the respective IN
endpoint

Is CBW.dCBWFlags ==

ISP1582/83 Firmware Programming Guide

Yesﬁ

Initialize the Endpoint Index
register to the respective OUT

endpoint
I]
v
DMA Transfer Counter
register = Atapi_Bytecount
rNo Is CBW.dCBWFlags == Yesj

DMA command register =
MDMA_Read_command

DMA command register =
MDMA_Write_command

Yes

INTRQ_PENDING ==
AND
CMD_INTRQ_OK ==

Bits CMD_INTRQ_OK and
INTRQ_PENDING refer to the
variable to which the DMA
Interrupt Reason register is
copied in the interrupt routine

DMA Interrupt Reason register: bit allocation

Bit 15 14

13 12 1 10 3 8

Symbol | TESTS resered oA | EXTEOT | NTEoT | mtRQ_ | owA
STOP PENDING FER_OK
Reset - [0 0 [0
No Bus rosot E B B o 0 o ”“
v Access ® R i W Rw R o o
Bt 7 . s s b 2 i
Read the DMA Transfer cOunter Symbeol reserved READ_1F0 gng TEOZIE ‘N%:dOD ox reserved
register to check partial transfer Reset o o o o 0 o
- Bus reset o 0 0 0 0 0 -
Byte_Transfered_Count =DMA Access RIW R RW R RIW R a RW

Transfer Counter register

v—No
CMD_INTRQ_OK =0

NTRQ_PENDING ==
AND

CMD_INTRQ_OK == 0

No

v
INTRQ_PENDING ==
AND

CMD_INTRQ_OK ==

INTRQ_PENDING ==
AND
CMD_INTRQ_OK ==

No

INTRQ_PENDING ==
AND
CMD_INTRQ_OK ==

Yes

v

INTRQ_PENDING = 0
AND
CMD_INTRQ_OK = 0

<

Yes

v

INTRQ_PENDING =0
Read the Command or Status Task File

register

CMD_INTRQ_OK ==

No
h 4

‘ CMD_INTRQ_OK = 0
I

<
<

Byte_Transfered_Count

CBW.dCBWFlags == 0x80

=0 AND

Yes

v

Issue the DMA
FLUSH command
to the DMA
Command register
Set Transfer_Error
flag

>y
‘ ATAPI_Bytecount = 0 ‘

Fig 18. Handling ATA_DATA_TRANSFER.

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note

Rev. 02 — 3 January 2005

31 of 45

Philips Semiconductors AN1 0039

. ISP1582/83 Firmware Programming Guide

Sector_Count = CBW.CDBJ7]
Endpt_FIFO =
CBW.dCBWDataTransferLength

ransfer Error ==

Yesl

Y Prev_State =
ATAPI_Read Phase
Sector_Count =0 No N
.
Yes ‘

Byte Transfered Count =
CBW.dCBWDataTransferLength

1=
Atapi_ByteCount = 512 CBW.Length 1=0

CBW.dCBWDataTransferLength =
CBW.dCBWDataTransferLength - 512
Interrupt Reason Task File register = 0

NoO———————>

Yesl

Atapi_ByteCount = CBW.dCBWDataTransferLength
Interrupt Reason Task File register = CBW.CDBJ8]
Set Transfer_Done flag

v
Sector Number Task File register = CBW.CDBI[5] Stop
Byte count LSB Task File register = CBW.CDB[4]

Byte count MSB Task File register = CBW.CDBJ[3]

Is master ATA drive Yes

i

No

Drive Select Task File register = Drive Select Task File register =
SLAVE | LBA_MODE | MASTER | LBA_MODE |
CBW.CDB[2] CBW.CDB[2]

v

Command Status Task File register =
ATA READ_DMA command
Auto_PIO =0
MDMA_Mode = 1
UDMA_Mode =0

v
Handle ATA Data Transfer
v
2;‘3\7%88;?:5;&%8;%2 1 Task File register functions
Task file ATA function ATAPI function
1FO data {16-bits) data (16-bits)
Transfer_Done == 1F1 errorffeature error/feature
AND 1F2 sector count interrupt reason
Transfer_Error == 1F3 sector number/LBA[T:0] reserved
1F4 cylinder low/LBA[15:8] cylinder low
1F5 cylinder high/LBA[23:18] cylinder high
Nvo 1F6 drive/head/LBA[27:24] drive select
Reset Transfer_Done flag 1F7 command status/command
CBW.dCBWDataTransferLength = 3F6 alternate status/command alternate status/command
Endpt_FIFO 3F7 drive address reserved

Fig 19. Handling ATA_READ_10.

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 32 of 45

Philips Semiconductors AN1 0039

. ISP1582/83 Firmware Programming Guide

Start

A
Initialize the Endpoint Index register to the
respective IN endpoint
Buffer length LSB Task File register =8
Buffer length MSB Task File register =0

\ J

Write to the Data Port register 4 bytes of
Drive_Setup.LBA[0-3]: 0x00, 0x00, 0x02, 0x00

\ J

Byte_Transfered_Count =
CBW.dCBWDataTransferLength

Y

Stop

Fig 20. Handling ATA READ CAPACITY.

Initialize the Endpoint Index register to the
respective IN endpoint

Buffer Length LSB Task File register = 12

Buffer Length MSB Task File register = 0

Write these values to Data Port register
0x00, 0x00, 0x00, 0x08, Drive_Setup.LBA[0-3],
0x00, 0x00,0x02, 0x00

Byte_Transfered_Count = 12
Prev_State = ATAPI_status phase
Set Transfer_Error flag

Fig 21. Handling ATA READ_FORMAT_CAPACITIES.

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 33 of 45

Philips Semiconductors

AN10039

ISP1582/83 Firmware Programming Guide

Start

Y

Initialize the Endpoint Index register to the
respective IN endpoint

Y

Write these values to the Data Port register:
0x70, 0x00, Error_Code.SENSE_KEY,
0x00, 0x00, 0x00, 0x00, 0x0A, 0x00, 0x00,
0x00, 0x00,Error_Code.ASC,
Error_Code.ASCQ,
0x00, 0x00, 0x00, 0x00

}

Validate the buffer using the Control
Function register bit VENDP
Byte_Transfered_Count =
CBW.dCBWDataTransferLength

In the 8-bit mode, write to the LSB and

__________ then the MSB of the Data Port register

Data Port register: bit allocation

Fig 22. Handling ATA REQUEST_SENSE.

Bit 15 14 13 12 11 10 9 8
Symbol DATAPORT[15:8]

Reset 0 Q) (5] 0 4] 0 Q
Bus reset 0 8] o 5] 0 4] 0 8]
Access RW RW RN RV RAN RAW RW RwW
Bit T 6 5 4 = 2 1 1]
Symbol DATAFORT[7.0]

Reset 0 0 0 [+] o] 0 0 0
Bus reset 0 o] o Q] 4] 0 o]
Access R RAW R RNV RN W R R
Control Function register: bit allocation

Bit 7 6 5 4 3 2 1 0
Symbol | reserved CLBUF VENDP DSEN STATUS STALL
Reset | - : . 0 0 0 0 0
Bus reset | - - - 0 0 0 0 0
Access | RW RW RW RW RW RW R RIW

Start

A

Initialize the Endpoint Index register
to the respective IN endpoint

A

Write the following values to the Data
Port register:

0x2A, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00

!

Validate the buffer BY using bit
VENDRP in the Control Function
register

A

Byte_Transfered_Count =
CBW.dCBWDataTransferLength

A
Stop

Fig 23. Handling ATA MODE_SENSE_10.

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note

Rev. 02 — 3 January 2005

34 of 45

Philips Semiconductors AN1 0039

. ISP1582/83 Firmware Programming Guide

Start

A
Error_Code.SENSE_KEY =5
Error_Code.ASC = 0x24
Error_Code.ASCQ =0

A
Set Error_Occur flag
Prev_State =
ATAPI_Cmd_Packet_Phase

A

Byte_Transfered_Count =0

A
Stop

Fig 24. Handling ATA MODE_SENSE_06.

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 35 of 45

Philips Semiconductors

AN10039

Sector_Count = CBW.CDB[7]
Endpt_FIFO =
CBW.dCBWnDataTransferLength

No

ISP1582/83 Firmware Programming Guide

Sector_Count =0

Yes

v

Atapi_ByteCount = 512
CBW.dCBWDataTransferLength =
CBW.dCBWDataTransferLength - 512
Interrupt Reason Task File register = 0

|

Yes

v

CBW.Length =0

Atapi_ByteCount = CBW.dCBWDataTransferLength
Interrupt Reason Task File register = CBW.CDBJ8]
Set Transfer_Done flag

.

Sector Number Task File register = CBW.CDB[5]
Byte count LSB Task File register = CBW.CDB[4]
Byte count MSB Task File register = CBW.CDBJ[3]

Is master ATA drive
No

Drive Select Task File register =
SLAVE | LBA_MODE |
CBW.CDBJ2]

Yes

Drive Select Task File register =
MASTER | LBA_MODE | CBW.CDBJ[2]

Command Status Task File register =
ATA WRITE_DMA command
Auto_P10 =0
MDMA_Mode = 1
UDMA_Mode =0

v

Handle ATA Data Transfer

|

Sector_Count = Sector Count - 1
CBW.CDBJ[4] = CBW.CDB[4] + 1

Task File register functions

Task file

Transfer_Done ==
AND
Transfer_Error ==

No

1F0
1F1
1F2
1F3
1F4
1F5
1F&

Reset Transfer_Done flag
CBW.dCBWDataTransferLength =
Endpt_FIFO
Byte_Transfered_Count =
CBW.dCBWDataTransferLength

1F7
3F6
3F7

ATA function

data (16-bits)
error/feature

sector count

sector numberLBA[T:0]
cylinder low/LBA[15:8]
cylinder high/L BA[23: 18]
driveshead/LBA[2T:24]
command

alternate status/command
drive address

ATAPI function
data {16-bits)
erorfeaturs
interrupt reason
reserved
cylinder low
cylinder high
drive select
status/command
alternate status/command
reserved

»

O,

Lg

Fig 25. Handling ATA WRITE_10.

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note

Rev. 02 — 3 January 2005

36 of 45

Philips Semiconductors

AN10039

5. GDMA application

ISP1582/83 Firmware Programming Guide

The GDMA application supports the GDMA slave and the PIO modes. These modes are
selected based on the vendor-specific command issued by the host. The host sends an
8-byte setup packet, followed by a 6-byte vendor-specific information. The number of

bytes to be transferred, the direction of transfer, and the mode of transfer are embedded
in the vendor-specific command.

Format of Setup data

orfset Fiela size | vawe Description
bmRequestTyps 1 Bitmap Characteristics of request:
D7 Data transfer direction
SB_Device_Request.bmRequestType == 1 !
vendor_specific (0xC0, 0x40, 0xA1, 0x21 No 065
Yes 4.0
4..31 :EFr{sser'«ed
1 bRequest 1 Value Specific request (refer to Table 9-3)
USB_Device_Request.bRequest == 0x0C 2 aluo 2 vl
AND
SB_Device_Request.bmRequestType == 0x40 Standard USB ! B Fte
Request
6 wiength 2 Count Number of bytes to transfer if there is a
Data stage
Endpoint Index register: bit allocation
Yes Bit 7 § 5 4 3 2 1 0
Symbol | fesarved EPOSETUP ENDPIDX[3.0] DR
Rosst | 0 0 0 0 0 0
No Handle the Bistesel | - T I
GDMA Start awss | RW AW RW AW RY —AW AW RM
command -
. J— /
USB_Device_Request.windex == 0x7204 _—
/
-
/
/’
-
o —
Initialize the Endpoint Index register Yes
to 1
Stall the endpoint by setting bit —— —
STALL in the Control Function CONOTFUNCHOTTRQRTEr: TN e »
register Bt 7 5 5] 3 2 1 0
Symbol | rasarvad CLBUF | VENDP | DSEN | STATUS | STALL
Reset | 0 0 0 0 0
Busreset | - . . 0 0 0 0 0
EPOSETUP == Aocess | RW RW W RW RW RW RW RW
Handle the
GDMA Stop
command
No
v [mi . .
Reset bit EPOTX in the h‘?'thE:‘”;x is f'°"‘E"" "‘:’I'ab'e to
copy of the Interrupt w ic t. (; rlrterhrulat nable regl.ster
Reason register is copied in the interrupt routine

@
o
S * 323

Fig 26. GDMA flowchart.

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note

Rev. 02 — 3 January 2005

37 of 45

Philips Semiconductors AN1 0039

. ISP1582/83 Firmware Programming Guide

Start Endpoint Index register: bit allocation
Bit T [5 4 E | 2 1 o

Symbol | resarved ERISETUP ENDPIDX[3:0] DIR

Reset | - - 0 0 0 0 o o

Initialize the Endpoint Index register to 0 Busreset | a 0 0 0 0 0
Set bit DSEN in the Control Function {...... Access | RW R R R RAW R R R

register

Control Function register: bit allocation e

Bit 7 5 5 4 e] 1 [
ait for OUT token AC Symbol | reserved CLBUF VENDP DEEN STATUS STALL
EPORx == Reset | - : - 0 0 o W o
Bus resat | - - 0 0 0. =0 o
Access | RW RIW RiW RV RAW R RN RN
No T
v Bit EPORx is from the variable to o
Clear EPORx bit | which the Interrupt Reason register ’
Initialize the Endpoint Index register to 0 | _is copied in the interrupt routine .~ g
i e
Read the 6-byte vendor-specific ",.-f""
information from the Data Port -

register into variable FileSize

Initialize the Endpoint Index register .

to1 |

Set bit STATUS in the Control
Function register

FileSize.Size == 0 Yes‘l

Reset Out_Reset_Done flag
Reset IN_Reset_Done flag

FileSize.DIR == 0x00
OR
FileSize.DIR == 0x80

No Handle PIO/GDMA
v Write
Handle PIO/GDMA
Read

.

\ 4

Stop

Fig 27. Handling GDMA start command.

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 38 of 45

Philips Semiconductors AN1 0039

. ISP1582/83 Firmware Programming Guide

DMA_Test_Mode != PIO

DMA Command register: bit allocation 4
Bit 7 6 5 4 3 2 1 0
Symbol | DMA_CND[F:0]
Yes Resst | | 1 1 1 1 1 1 1
v Busreset | | 1 1 1 1 1 1 1
Stop the CPLD DMA controller Accass | M N W w M W W
Reset the CPLD DMA controller

DMA commands

Code Mame Ciescription
(hex)
Is master mode Yes 4 4] GOMA Read Generic DMA IN token transfer (slave mode only): Datais
transferred from the srternal DMA bus to the internal buffer.
- Strober DICW ternal D& Controller.
Initialize the CPLD DMA m CDMA W Genari Dr\'l.h?ue:mk: b fon' | - de only): Data i
. Ti anaric n ransfer (slave made only): Datais
Nvo controller for the Master Write transferred from the internal buffer to the axizmal DMA bus.
mode Strobe: DIOR by external DMA Controler.
Initialize the CPLD DMA Initialize the CPLD DMA counter | o205 - ressrved
controller for the Slave Read to FileSize.Slze 06 MOMA Rzad Multiword DMA Read: Data is transfarred from the extemal
mode DKL bus to the internal buffer,
ar MDA Write Multiword DMA Write: Data is transferred from the internal
No ‘ buffer to the extzmal DMA bus.
>
v

‘ Set the CPLD DMA mode

v

Initialize the DMA Endpoint register to the
respective OUT endpoint
Initialize the Endpoint Index register to a value
not equal to the DMA Endpoint register
Initialize the DMA transfer counter to
FileSize.Size
]

'Bits DMA_XFER_OK and INT_EOT
are from the variable to which the
A DMA Interrupt Reason register is

Yes ‘,-"' copied in the interrupt routine

DMA_Test_Mode == GDMA

."'
DMA command register = [
N GDMA_Write command 4 o
o Vi { Bits SUSP and EPOSETUP are
i from the variable to which the
;"" Interrupt reason register is
DMA Test Mode == MDMA Yes—y / “I copied in the interrupt routine
DMA command register = ‘, :
MDMA_Write command /,- _,/' BUS_RESET is a flag
No / 7 i
v No#—
Handle 4 i
PIO_Write
INT_EOT ==
BUS_RESET ==1 OR
Nvo EPOSETUP ==
Reset internal variable
DMA_XFER_OK =0 Yes
INT_EOT=0 Write to the DMA command
register with DMA_REST
< Reinitialize the DMA
< |
h 4

Stop

Fig 28. Handling PIO or GDMA write.

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

39 of 45

Application note Rev. 02 — 3 January 2005

Philips Semiconductors

AN10039

DMA_Test_Mode != PIO

ISP1582/83 Firmware Programming Guide

DMA Command register: bit allocation

YVes Bit 1 6 5 4 3 2 1 0
v symbol | DA CHD[T:0]
Stop the CPLD DMA Resat | 1 1 1 1 1 1 1 1
controller
Reset the CPLD DMA Busreset | 1 1 1 1 1 1 1 1
controller Access | N W W W W N N W

DMA commands

Is master mode Yes
Code Name Diescription
— (hex)
Initialize the CPLD DMA o0 GOMA Read Generic DMA I token transfer (slave mode only): Data iz
No controller for the Master transferred from the extemal DMA bus to the internal buffer.
v Read mode Strobe: DIOW by ext=mal OMA Controller.
Initialize the CPLD DMA controller Initialize the CPLD DMA ol GOMAWrte Generic DMA OUT token transfer (slave mode only): Data is
for the Slave Write mode " : transferred from the internal buffer to the exdemal DMA bus.
counter to FileSize.Slze Strobe: DIOR. by external DMA Controler,
No le | 21006 - resarved
*‘] MO KA Read Multivord DMA Read: Data is trarsfarmed from the external

Set CPLD DMA mode DA bus to the internd buffer.

or MO B Wirite Multivord DMA Write: Data is transferred from the internal
% buffer to the extzmal DMA bus.

Initialize the DMA Endpoint register to
the respective IN endpoint
Initialize the Endpoint Index register
to value not equal to the DMA
Endpoint register
Initialize the DMA transfer counter to

FileSize.Size

__ Bit DMA_XFER_OK is from
DMA_Test_Mode == GDIA ves the variable to which the DMA
. 4 Interrupt reason register is
X .~ icopied in the interrupt routine
No DMA command register = e
GDMA_Read command ST
/'/
ye Bits SUSP and EPOSETUP are
DMA Test Mode == MDMA Yes rd from the variable to which the
- - l //' A Interrupt reason register is
DMA command register = /,«" " copied in the interrupt routine
MDMA_Read command /'/ ,/‘/
No e .""
v . rd No——~"
Handle v ye g .
PIO_Read s A _______B_US_RESET is a flag

DMA_XFER_OK == ——Yes

SUSP ==10OR
BUS_RESET ==1 OR
EPOSETUP ==

No

}

Reset internal variable
DMA_XFER_OK =0

Yes

v
Write to the DMA command
‘ register with DMA_REST
< Reinitialize the DMA

v
Stop

Fig 29. Handling PIO or GDMA read.

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

40 of 45

Application note Rev. 02 — 3 January 2005

Philips Semiconductors AN1 0039

. ISP1582/83 Firmware Programming Guide

Enable the CPLD PIO mode
Issue the CPLD PIO Reset command

:

Initialize the Endpoint Index register
to the respective OUT endpoint

This_buffer_remain =
This_transfer_size

Yes

Is the device

full-speed his_buffer_remain > 64

Yes‘l ryes

No PIO_maxpacket_size = 64
v This_buffer_size = 64 N
This_buffer_remain - = 64 vo
PIO_maxpacket_size = 512 - -
This_buffer_size =
l¢ This_buffer_remain
f This_buffer_remain = 0

PIO_Bytes_Remaining =

FileSize.Size Y
Count_PIO =0
‘ >
No Yes ¢
Read the Data Port register LSB to the internal RAM

Increment Count_PIO
Read the Data Port register MSB to the internal RAM
Increment Count_PIO

PIO_Bytes_Remaining != 0

Yes

PIO_Bytes_Remaining
>
P1O_MaxPaketSize

Count_PIO
<

This_tranfer_size =
No PIO_MaxPacketSize
v PIO_Bytes_remaining - =
, K PIO_MaxPacketSize No
This_tranfer_size =
PIO_Bytes_remaining

PIO_Bytes_Remaining = 0

this_buffer_size

le [BUS_RESET is !
) No i aflagwhichis o CPLD PIO Write LSB from the internal RAM
Buffer Staus T .. et seton Increment Count_PIO
uffer Staus - T ves e { BUS_RESET CPLD PIO Write MSB from the internal
register==0 __— - i interrupt RAM
SUSP OR Increment Count_PIO

| Bits EP2Rx, SUSP
i and EPOSETUP are
i from the variable to
which the Interrupt
Reason register is
copied in the
interrupt routine

EPOSETUP OR
US_RESET

No
Count_PIO
<

this_buffer_size

Yes

SUSP OR
BUS_RESET

OX

e Yes

Fig 30. Handling PIO write.

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

41 of 45

Application note Rev. 02 — 3 January 2005

Philips Semiconductors

AN10039

Initialize the Endpoint Index
register to the respective IN
endpoint
v
Enable the CPLD PIO mode
Issue the CPLD PIO Reset
command

Is the device
full-speed?

Yesj

ISP1582/83 Firmware Programming Guide

Count_PIO =0

Yes

g

CPLD PIO Read LSB to the internal RAM

CPLD PIO Read MSB to the internal RAM

Increment Count_PIO

Increment Count_PIO

64

No

P10_maxpacket_size =

h 4

P1O_maxpacket_size =
512

-

P1O_Bytes_Remaining =
FileSize.Size

PI10_Bytes_Remaining

>

Count_PIO
<

this_buffer_size

Count_PIO=0

Yes

Write to the Data Port register LSB from the internal

Write to the Data Port register MSB from the

RAM
Increment Count_PIO

internal RAM
Increment Count_PIO

PIO_MaxPaketSize

Yes

A

No
v

This_tranfer_size =
PIO_Bytes_remaining

This_tranfer_size =
P10_MaxPacketSize
PIO_Bytes_remaining - =
P10_MaxPacketSize

P10O_Bytes_Remaining = 0

<

R

This_buffer_remain =
This_transfer_size

This_buffer_remain

Yes

his_buffer_remain > 64

rYes

Validate the buffer by setting bit
VENDP in the Control Function
register for short packet

Count_PIO
<

this_buffer_size

This_transfer_size
<

PIO_MaxPacketSize

No

v

i Bits SUSP and
{EPOSETUP are from

i which the Interrupt

Wait if the Buffer Status register ==
(exit on SUSP, BUS_RESET,
EPOSETUP)

{ the variable into

i Reason register is
i copied in the
interrupt routine

| S—

No

This_buffer_size = 64
This_buffer_remain - = 64

v

This_buffer_size =
This_buffer_remain
This_buffer_remain =0

|

{"'BUS_RESETisaflag .

®

Fig 31. Handling PIO read.

i which is seton the
{ BUS_RESET interrupt

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note

Rev. 02 — 3 January 2005

42 of 45

Philips Semiconductors

AN10039

ISP1582/83 Firmware Programming Guide

Endpoint Index register: bit allocation

Bit

Initialize the Endpoint Index register to 0

)

Read the 6-byte vendor-specific
information from the Data Port register
into variable FileSize

I

Initialize the Endpoint Index register to 1

register

Set bit STATUS in the Control Function

Fig 32. Handling GDMA Stop command.

to which the Interrupt Reason
register is copied in the

on SUSP or RESUMEY ™"

-

interrupt routine (Exit the Iogp'"

-

7 & 5 I 3 2 1 0
Symbol | reserved EPOSETUP ENDPIDX[3:1] DIR
Initialize the Endpoint Index register to 0 Reset | 0 0 0 0 0 0
Set bit DSEN in the Control Function ~ f-..__] Busresst | - : 0 0 0 0 o o
register Eitees._ | R RW RN R R R RN RN
Yes Control Function register: bit allocation TTtweeal,
i Bit 7 & 5 I 3 7 1 D
Wait for OUT token ACK Symbol | ressrved CLBUF | VENDP | DSEM | STATUS | STALL
EPORx == Reset | 0 0 A 0
LY Bus rasat | - 0 0 1] ’.¢" o o
N Access | RW RIW RIW RAN R Al R R
No *, Lo
‘ \\ cemanae "»‘
™, { Bit EPORx is from the variable
\
Clear EPORX bit .

Application note

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Rev. 02 — 3 January 2005

43 of 45

Philips Semiconductors

AN10039

6. Disclaimers

Life support — These products are not designed for use in life support
appliances, devices, or systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips Semiconductors
customers using or selling these products for use in such applications do so
at their own risk and agree to fully indemnify Philips Semiconductors for any
damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to
make changes in the products - including circuits, standard cells, and/or
software - described or contained herein in order to improve design and/or
performance. When the product is in full production (status ‘Production’),
relevant changes will be communicated via a Customer Product/Process
Change Notification (CPCN). Philips Semiconductors assumes no

ISP1582/83 Firmware Programming Guide

responsibility or liability for the use of any of these products, conveys no
licence or title under any patent, copyright, or mask work right to these
products, and makes no representations or warranties that these products
are free from patent, copyright, or mask work right infringement, unless
otherwise specified.

Application information — Applications that are described herein for any of
these products are for illustrative purposes only. Philips Semiconductors
make no representation or warranty that such applications will be suitable for
the specified use without further testing or modification.

7. Trademarks

SoftConnect — is a trademark of Koninklijke Philips Electronics N.V.

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note

Rev. 02 — 3 January 2005

44 of 45

Philips Semiconductors

AN10039

ISP1582/83 Firmware Programming Guide

8. Contents

1. Introduction ... 3

2. ISP1582/83 initialization routine.............c.......... 4

21 Initializing the ISP1582/83 registers.................... 4

2.2 Initializing the Mode registercccccceeiiiinnnne. 4

2.3 Initializing the Interrupt Configuration register.....5

24 Initializing the Interrupt Enable register............... 7

25 Initializing the DMA Configuration and Hardware

FEJISTEIS oottt 8

2.6 Initializing the ISP1582/83 endpoint.................. 11

3. ISP1582/83 USB enumeration process............ 15

3.1 Setup token with data IN stagecccccoeee.

3.2 Setup token with data OUT stage

3.3 Setup token with no data stage............

3.4 Stalling setup token............

4. Mass storage application

4.1 Mass storage protocol.........ccccceeeiiiiiiiiiiiiiinnnnne.

411 Extracting Command Block Wrapper

41.2 Handling CBW for ATA and ATAPI device........ 23

41.3 Handling invalid CBWcccooiiiiiiieeiieeee

41.4 Handling errorc..oooveee i

415 Handling CBW for an ATA device

5. GDMA applicationcccceeccciieinicccceeeeeenees

6. Disclaimersccoooiiiiiiiiiiee e

7. Trademarks.....................

8. Contents.......cceeeirieeeee e
© Koninklijke Philips Electronics N.V. 2005
All rights are reserved. Reproduction in whole or in part is prohibited without the prior
written consent of the copyright owner. The information presented in this document does
not form part qf any quqtation or contract, is believed to be accurate and reliable and may

PHILIPS be changed without notice. No liability will be accepted by the publisher for any

consequence of its use. Publication thereof does not convey nor imply any license under
patent- or other industrial or intellectual property rights.

Date of release: 3 January 2005

Published in The Netherlands

	Introduction
	ISP1582/83 initialization routine
	Initializing the ISP1582/83 registers
	Initializing the Mode register
	Initializing the Interrupt Configuration register
	Initializing the Interrupt Enable register
	Initializing the DMA Configuration and Hardware registers
	Initializing the ISP1582/83 endpoint

	ISP1582/83 USB enumeration process
	Setup token with data IN stage
	Setup token with data OUT stage
	Setup token with no data stage
	Stalling setup token

	Mass storage application
	Mass storage protocol
	Extracting Command Block Wrapper
	Handling CBW for ATA and ATAPI device
	Handling invalid CBW
	Handling error
	Handling CBW for an ATA device

	GDMA application
	Disclaimers
	Trademarks
	Contents

