

 AN10039
 ISP1582/83 Firmware Programming Guide
 Rev. 02 — 3 January 2005 Application note

Document information

Info Content

Keywords isp1582; isp1583; peripheral controller; usb; universal serial bus

Abstract This document explains the firmware programming of the ISP1582/83.

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 2 of 45

Contact information
For additional information, please visit: http://www.semiconductors.philips.com

For sales office addresses, please send an email to: sales.addresses@www.semiconductors.philips.com

Revision history

Rev Date Description

2.0 20050103 Second release: updated Section 2.6.

1.0 20040603 First release.

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 3 of 45

1. Introduction
The ISP1582/83 is a Hi-Speed Universal Serial Bus (USB) peripheral controller that
provides a flexible interface for a wide range of microcontrollers. The high-speed
microcontroller interface increases system throughput and reduces processor utilization.

The ISP1582/83 can be configured to function, with a common USB bus enumeration
process, as a Generic Direct Memory Access (GDMA) application or a mass storage
application. This document is divided based on the USB enumeration and the two
supported applications.

Fig 1 shows the ISP1582/83 firmware-programming model.

Start

ISP1582/83
initialization

USB
enumeration

Mass storage
initialization

GDMA
 initialization

Mass storage
process GDMA process

End

Mass storage
or

GDMA

Mass storage
or

GDMA

Fig 1. Flowchart of the ISP1582/83 firmware-programming model.

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 4 of 45

2. ISP1582/83 initialization routine

2.1 Initializing the ISP1582/83 registers
The initialization routine depends on the application targeted for the ISP1582/83. The
routine has most of the initializations common to all applications, except for the DMA
Configuration and DMA Hardware registers that determine the function of the
ISP1582/83. Fig 2 shows the flowchart of the ISP1582/83 register initialization.

Start

Initialize Mode register

Initialize Interrupt
Configuration register

Initialize DMA Configuration
register

Initialize DMA Hardware
register

End

Initialize endpoint

Initialize Interrupt Enable
register

Fig 2. Register initialization.

2.2 Initializing the Mode register
After the power-on reset, the processor initializes the Mode register (see Table 1:). This
register can be programmed, depending on the user application.

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 5 of 45

Table 1: Mode register: bit allocation
Bit 15 14 13 12 11 10 9 8

Symbol TEST2 TEST1 TEST0 reserved DMACLK
ON

VBUSSTAT

Reset - - - - - - 0 -

Bus reset - - - - - - 0 -

Access R R R R R R R/W R

Bit 7 6 5 4 3 2 1 0

Symbol CLKAON SNDRSU GOSUSP SFRESET GLINTENA WKUPCS PWRON SOFTCT

Reset 0 0 0 0 0 0 0 0

Bus reset 0 0 0 0 unchanged 0 0 unchanged

Access R/W R/W R/W R/W R/W R/W R/W R/W

The DMACLKON bit of the Mode register determines whether the clock should be
supplied to the DMA core of the ISP1582/83. Disabling the bit at initialization saves
power. The DMA clock can be switched on when DMA is required using the DMACLKON
bit.

Power can also be saved by disabling clock CLKAON during suspend mode. It is
recommended that you use this power saving mechanism to save power when the
ISP1582/83 is configured to bus-powered applications. Next, set the global interrupt
enable (bit GLINTENA) to enable the interrupt mechanism of the ISP1582/83. The
ISP1582/83 allows you to wake up the system from suspend mode by toggling the chip
select (pin CS_N) of the ISP1582/83.

The ISP1582/83 allows you to design systems to support the sleep mode in which power
to the ISP1582/83 is turned off to save power. The PWRON bit in the Mode register
configures the ISP1582/83 into two modes of operation when it is in the suspend state.
When the bit is set to logic 0, the firmware must issue an unlock command to the
ISP1582/83 before any write operation to a register can be performed. This prevents
accidental writing to registers when the processor wakes up from the power saving
mode.

The SoftConnect™ feature (bit SOFTCT) is used to connect the pull-up resistor to the DP
line of the ISP1582/83. This gives the users complete authority on when to connect and
disconnect from the USB bus. The SOFTCT bit is used together with VBUS (bit
VBUSSTAT) that reflects whether the USB cable is plugged in or out.

2.3 Initializing the Interrupt Configuration register
After setting the Mode register, the Interrupt Configuration register (see Table 2:) is
initialized. This register controls how an interrupt is generated for the control pipe, IN
endpoint and OUT endpoint.

Table 2: Interrupt Configuration register: bit allocation
Bit 7 6 5 4 3 2 1 0

Symbol CDBGMOD[1:0] DDBGMODIN[1:0] DDBGMODOUT[1:0] INTLVL INTPOL

Reset 1 1 1 1 1 1 0 0

Bus reset 1 1 1 1 1 1 unchanged unchanged

Access R/W R/W R/W R/W R/W R/W R/W R/W

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 6 of 45

The interrupt generation depends on the type of mode setting specified in the register;
see Table 3:. CDBGMOD is for the control pipe, DDBGMODIN is for the IN pipe, and
DDBGMODOUT is for the OUT pipe. The register sets interrupt to the level or pulse
trigger by using the INTLVL bit. The polarity of the interrupt signal is control by INTPOL.

Table 3: Debug mode settings
Value CDBGMOD DDBGMODIN DDBGMODOUT

00h Interrupt on all ACK and
NAK

Interrupt on all ACK and
NAK

Interrupt on all ACK, NYET
and NAK

01h Interrupt on all ACK Interrupt on ACK Interrupt on ACK and NYET

1Xh Interrupt on all ACK and
first NAK

Interrupt on all ACK and first
NAK

Interrupt on all ACK, NYET
and first NAK

The typical function of the Interrupt Configuration register is to enable the ACK interrupt.

The following figures show the CATC trace of the ACK interrupt with the red arrows
indicating the interrupt signal that will be generated on the INT pin, when ACK condition
occurs.

Fig 3. CATC capture of setup and OUT ACK interrupt.

The following sample code programs the IN endpoint interrupt to all ACK conditions:
Void Init_D14_SFR(void)
{
//Set the control pipe to ACK only interrupt
//Set the IN pipe to ACK only interrupt
//Set OUT pipe to ACK and NYET interrupt
D14_Cntrl_Reg.D14_INT_CONFIG = 0x54;
}

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 7 of 45

Fig 4. CATC capture of IN ACK interrupt.

The OUT endpoint is programmed to all ACK and NYET interrupts as shown in Fig 5.

Fig 5. CATC capture of OUT ACK interrupt.

2.4 Initializing the Interrupt Enable register
Next is the initialization of the Interrupt Enable register (see Table 4:). Setting the
respective bit to logic 1 will enable the interrupt signal to be generated on the INT pin of
the ISP1582/83. Take into consideration the interrupt service routine because an AND
operation must be performed on the bits in the Interrupt Reason register with the enable
interrupt. The Interrupt Reason register reflects the status bit of the respective event,
even if the enable bit is not set in the Interrupt Enable register.

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 8 of 45

Table 4: Interrupt Enable register: bit allocation
Bit 31 30 29 28 27 26 25 24

Symbol reserved IEP7TX IEP7RX

Reset - - - - - - 0 0

Bus reset - - - - - - 0 0

Access - - - - - - R/W R/W

Bit 23 22 21 20 19 18 17 16

Symbol IEP6TX IEP6RX IEP5TX IEP5RX IEP4TX IEP4RX IEP3TX IEP3RX

Reset 0 0 0 0 0 0 0 0

Bus reset 0 0 0 0 0 0 0 0

Access R/W R/W R/W R/W R/W R/W R/W R/W

Bit 15 14 13 12 11 10 9 8

Symbol IEP2TX IEP2RX IEP1TX IEP1RX IEP0TX IEP0RX reserved IEP0
SETUP

Reset 0 0 0 0 0 0 - 0

Bus reset 0 0 0 0 0 0 - 0

Access R/W R/W R/W R/W R/W R/W R/W R/W

Bit 7 6 5 4 3 2 1 0

Symbol IEVBUS IEDMA IEHS_STA IERESM IESUSP IEPSOF IESOF IEBRST

Reset 0 0 0 0 0 0 0 0

Bus reset 0 0 0 0 0 0 0 unchanged

Access R/W R/W R/W R/W R/W R/W R/W R/W

The following is a sample code for the interrupt service routine:

Void Int_Ext_0(void) interrupt 0 using 1
{
 // Read in USB interrupt reason register
 USB_Int_Flag.VALUE = D14_Cntrl_Reg.D14_INT.VALUE;
 USB_Int_Flag.VALUE &= D14_INT_ENABLE;

 //Read in DMA interrupt register
 DMA_Int_Flag.VALUE = D14_Cntrl_Reg.D14_DMA_INT.VALUE;
 DMA_Int_Flag.VALUE &= D14_DMA_INT_ENABLE;

 //Clear DMA interrupt register
 D14_Cntrl_Reg.D14_DMA_INT.VALUE = DMA_Int_Flag.VALUE;
 // Clear USB interrupt reason register
 D14_Cntrl_Reg.D14_INT.VALUE = USB_Int_Flag.VALUE;
}

2.5 Initializing the DMA Configuration and Hardware registers
Next, you configure the DMA Configuration register (see Table 5:) and DMA Hardware
register (see Table 6:) to either GDMA or mass storage application. Based on the
application, some associated registers must be programmed.

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 9 of 45

Table 5: DMA Configuration register: bit allocation
Bit 15 14 13 12 11 10 9 8

Symbol reserved ATA_
MODE

DMA_MODE[1:0] PIO_MODE[2:0]

Reset 0 0 0 0 0 0 0 0

Bus reset 0 0 0 0 0 0 0 0

Access R/W R/W R/W R/W R/W R/W R/W R/W

Bit 7 6 5 4 3 2 1 0

Symbol DIS_XFER
_CNT

reserved MODE[1:0] reserved WIDTH

Reset 0 0 0 0 0 0 0 1

Bus reset 0 0 0 0 0 0 0 1

Access R/W R/W R/W R/W R/W R/W R/W R/W

Table 6: DMA Hardware register: bit allocation
Bit 7 6 5 4 3 2 1 0

Symbol ENDIAN[1:0] EOT_POL MASTER ACK_POL DREQ_
POL

WRITE_
POL

READ_POL

Reset 0 0 0 0 0 1 0 0

Bus reset 0 0 0 0 0 1 0 0

Access R/W R/W R/W R/W R/W R/W R/W R/W

The ISP1582/83 can be configured to various operation modes, depending on the
combination of the various bits in the DMA Configuration and DMA Hardware registers.
Table 7: illustrates the valid combinations.

Table 7: DMA configuration
ATA mode Master DMA mode PIO mode DIS_XFER

_CNT
Mode Width Description

Not used Not used 0 0 1 GDMA Slave mode
DMA Transfer Counter
DIOR as read strobe
DIOW as write strobe
16-bit data bus

Not used Not used 0 1 1 GDMA Slave mode
DMA Transfer Counter
DIOR as read strobe
DACK as write strobe
16-bit data bus

0 0

Not used Not used 0 2 1 GDMA Slave mode
DMA Transfer Counter
DACK as read strobe
DACK as write strobe
16-bit data bus

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 10 of 45

ATA mode Master DMA mode PIO mode DIS_XFER
_CNT

Mode Width Description

Not used Not used 0 0 0 GDMA Slave mode
DMA Transfer Counter
DIOR as read strobe
DIOW as write strobe
8-bit data bus

Not used Not used 0 1 0 GDMA Slave mode
DMA Transfer Counter
DIOR as read strobe
DACK as write strobe
8-bit data bus

Not used Not used 0 2 0 GDMA Slave mode
DMA Transfer Counter
DACK as read strobe
DACK as write strobe
8-bit data bus

Not used Not used 1 2 0 GDMA Slave mode
EOT mode
DACK as read strobe
DACK as write strobe
8-bit data bus

0 0 Not used Not used 1 ATA mode
MDMA Mode 0 strobe timing
PIO mode 0 timing

1 1 Not used Not used 1 ATA mode
MDMA Mode 1 strobe timing
PIO Mode 1 timing

2 2 Not used Not used 1 ATA mode
MDMA Mode 2 strobe timing
PIO Mode 2 timing

2 3 Not used Not used 1 ATA mode
MDMA Mode 2 strobe timing
PIO Mode 3 timing

1 0

2 4 Not used Not used 1 ATA mode
MDMA Mode 2 strobe timing
PIO Mode 4 timing

Not used Not used Not used 0 1 GDMA Master mode
DMA Transfer Counter
ATA MDMA 0 Strobe timing
16-bit data bus

Not used Not used Not used 1 1 GDMA Master mode
DMA Transfer Counter
ATA MDMA 1 Strobe timing
16-bit data bus

1 1

Not used Not used Not used 2 1 GDMA Master mode
DMA Transfer Counter
ATA MDMA 2 Strobe timing
16-bit data bus

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 11 of 45

ATA mode Master DMA mode PIO mode DIS_XFER
_CNT

Mode Width Description

Not used Not used Not used 0 0 GDMA Master mode
DMA Transfer Counter
ATA MDMA 0 Strobe timing
8-bit data bus

Not used Not used Not used 1 0 GDMA Master mode
DMA Transfer Counter
ATA MDMA 1 Strobe timing
8-bit data bus

Not used Not used Not used 2 0 GDMA Master mode
DMA Transfer Counter
ATA MDMA 2 Strobe timing
8-bit data bus

0 1 Invalid Invalid Invalid Invalid Invalid Invalid Mode

When DIS_XFER_CNT is set to logic 1, the DMA transfer counter is not in use, and the
DMA termination is done using the input signal of pin EOT. This mode is called the EOT
mode. The polarity of pin EOT can be set using the EOT_POL bit in the DMA Hardware
register.

2.6 Initializing the ISP1582/83 endpoint
The endpoint FIFO configuration is done using the Endpoint MaxPacketSize register (see
Table 8:) and the Endpoint Type register (Table 9:), and indexed using the Endpoint
Index register (see Table 10:).

For the same endpoint number, ensure that initialization is done for both the IN and OUT,
even if only one side is used.

Table 8: Endpoint MaxPacketSize register: bit allocation
Bit 15 14 13 12 11 10 9 8

Symbol reserved NTRANS[1:0] FFOSZ[10:8]

Reset - - - 0 0 0 0 0

Bus reset - - - 0 0 0 0 0

Access R/W R/W R/W R/W R/W R/W R/W R/W

Bit 7 6 5 4 3 2 1 0

Symbol FFOSZ[7:0]

Reset 0 0 0 0 0 0 0 0

Bus reset 0 0 0 0 0 0 0 0

Access R/W R/W R/W R/W R/W R/W R/W R/W

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 12 of 45

Table 9: Endpoint Type register: bit allocation
Bit 15 14 13 12 11 10 9 8

Symbol reserved

Reset - - - - - - - -

Bus reset - - - - - - - -

Access R/W R/W R/W R/W R/W R/W R/W R/W

Bit 7 6 5 4 3 2 1 0

Symbol reserved NOEMPKT ENABLE DBLBUF ENDPTYP[1:0]

Reset - - - 0 0 0 0 0

Bus reset - - - 0 0 0 0 0

Access R/W R/W R/W R/W R/W R/W R/W R/W

Table 10: Endpoint Index register: bit allocation
Bit 7 6 5 4 3 2 1 0

Symbol reserved EP0SETUP ENDPIDX[3:0] DIR

Reset - - 0 0 0 0 0 0

Bus reset - - 0 0 0 0 0 0

Access R/W R/W R/W R/W R/W R/W R/W R/W

Initialization of the endpoint is done as depicted by the flowchart in Fig 6.

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 13 of 45

Start

All endpoint
configured?

End

Initialize the endpoint
index to the required

endpoint

Set endpoint type and
enable endpoint

All endpoint
configured?

Yes

No

Yes

Initia lize the
Endpoint Index
to the required

endpoint

Full-speed High-speed

NoNo

Set the
M axPacketSize of

the endpoint to
high-speed

Set the
MaxPacketSize
of the endpoint

to full-speed

Initia lize the
Endpoint Index
to the required

endpoint

H igh-speed
or full-
speed

Fig 6. Initializing endpoint.

The initialization routine is used when:
• The system is powered up.
• A bus-reset event occurs.
• There is a change from full-speed to high-speed.

The following is a sample code for endpoint initialization:
void Init_Endpoint(void)
{

//check if device in full speed state
if(Kernel_Flag.BITS.HS_FS_State == FULL_SPEED)

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 14 of 45

{
//Bulk Out MaxPacketSize Endpoint
 D14_Cntrl_Reg.D14_ENDPT_INDEX = 4;
 D14_Cntrl_Reg.D14_ENDPT_MAXPKTSIZE.VALUE = 0x4000;

//Bulk In MaxPacketSize Endpoint
 D14_Cntrl_Reg.D14_ENDPT_INDEX = 5;
D14_Cntrl_Reg.D14_ENDPT_MAXPKTSIZE.VALUE = 0x4000;

 //Bulk Out Endpoint Type
D14_Cntrl_Reg.D14_ENDPT_INDEX = 4;
 D14_Cntrl_Reg.D14_ENDPT_TYPE.VALUE = 0x1600;

 //Bulk In Endpoint Type
D14_Cntrl_Reg.D14_ENDPT_INDEX = 5;
 D14_Cntrl_Reg.D14_ENDPT_TYPE.VALUE = 0x1600;

//enable FIFO
 D14_Cntrl_Reg.D14_ENDPT_INDEX = 4;
 D14_Cntrl_Reg.D14_ENDPT_TYPE.VALUE |= 0x0800;

 //enable FIFO
 D14_Cntrl_Reg.D14_ENDPT_INDEX = 5;
 D14_Cntrl_Reg.D14_ENDPT_TYPE.VALUE |= 0x0800;

}

//check if device in high speed
if(Kernel_Flag.BITS.HS_FS_State == HIGH_SPEED)
{

 //Bulk Out MaxPacketSize Endpoint
D14_Cntrl_Reg.D14_ENDPT_INDEX = 4;
 D14_Cntrl_Reg.D14_ENDPT_MAXPKTSIZE.VALUE = 0x0002;

 //Bulk In MaxPacketSize Endpoint
 D14_Cntrl_Reg.D14_ENDPT_INDEX = 5;
 D14_Cntrl_Reg.D14_ENDPT_MAXPKTSIZE.VALUE = 0x0002;

 //Bulk Out Endpoint Type
D14_Cntrl_Reg.D14_ENDPT_INDEX = 4;
D14_Cntrl_Reg.D14_ENDPT_TYPE.VALUE = 0x1600;

//Bulk In Endpoint Type
D14_Cntrl_Reg.D14_ENDPT_INDEX = 5;
 D14_Cntrl_Reg.D14_ENDPT_TYPE.VALUE = 0x1600;

//enable FIFO
 D14_Cntrl_Reg.D14_ENDPT_INDEX = 4;
 D14_Cntrl_Reg.D14_ENDPT_TYPE.VALUE |= 0x0800;

 //enable FIFO
 D14_Cntrl_Reg.D14_ENDPT_INDEX = 5;

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 15 of 45

 D14_Cntrl_Reg.D14_ENDPT_TYPE.VALUE |= 0x0800;
}

The initialization of the endpoint is done as shown in Fig 2 to allow the endpoint FIFO
RAM to be configured. Ensure that the total endpoints FIFO size does not exceed 8 kB.

3. ISP1582/83 USB enumeration process
The USB enumeration process can be divided into three categories:

• Setup token with data IN stage; see Section 3.1
• Setup token with data OUT stage; see Section 3.2
• Setup token with no data stage; see Section 3.3.

Besides these categories, there is also a stalling procedure for the endpoint
(see Section 3.4). Special attention must be given when stalling the endpoint of the
ISP1582/83.

The endpoint Index register is used to reference the control endpoint and the setup
endpoint. The setup endpoint is 8 bytes in length. It is used for storing the USB
peripheral request from the host. The firmware only needs to program the EP0SETUP bit
of the ISP1582/83 (see Table 10:) to reference the index to the setup endpoint.

The data from the setup or control endpoint, indexed by the endpoint index is read from
the FIFO using the Data Port register; see Table 11:.

Table 11: Data Port register: bit allocation
Bit 15 14 13 12 11 10 9 8

Symbol DATAPORT[15:8]

Reset 0 0 0 0 0 0 0 0

Bus reset 0 0 0 0 0 0 0 0

Access R/W R/W R/W R/W R/W R/W R/W R/W

Bit 7 6 5 4 3 2 1 0

Symbol DATAPORT[7:0]

Reset 0 0 0 0 0 0 0 0

Bus reset 0 0 0 0 0 0 0 0

Access R/W R/W R/W R/W R/W R/W R/W R/W

In the case of writing to the endpoint, the Data Port register is also used for the data
transfer to the control IN endpoint. The control endpoint is controlled by the Control
Function register (see Table 12:) that allows the firmware to clear the data in the OUT
endpoint by using the CLBUF bit. The endpoint FIFO can be validated by either the
Buffer Length register or the VENDP bit in the Control Function register. The Buffer
Length register (see Table 13:) reflects the amount of data in the IN endpoint. As for the
OUT endpoint FIFO, the buffer length is a means for the firmware to autovalidate the
FIFO once the value is reached. It is used when the data to be sent in the IN endpoint is
a short packet.

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 16 of 45

Table 12: Control Function register: bit allocation
Bit 7 6 5 4 3 2 1 0

Symbol reserved CLBUF VENDP DSEN STATUS STALL

Reset - - - 0 0 0 0 0

Bus reset - - - 0 0 0 0 0

Access R/W R/W R/W R/W R/W R/W R/W R/W

Table 13: Buffer Length register: bit allocation
Bit 15 14 13 12 11 10 9 8

Symbol DATACOUNT[15:8]

Reset 0 0 0 0 0 0 0 0

Bus reset 0 0 0 0 0 0 0 0

Access R/W R/W R/W R/W R/W R/W R/W R/W

Bit 7 6 5 4 3 2 1 0

Symbol DATACOUNT[7:0]

Reset 0 0 0 0 0 0 0 0

Bus reset 0 0 0 0 0 0 0 0

Access R/W R/W R/W R/W R/W R/W R/W R/W

In the control function, the DSEN bit is for the ISP1582/83 to proceed to the data stage. If
the setup token is with a data OUT stage, the firmware must set the DSEN bit to the
ISP1582/83 for the device to generate an ACK handshake to the OUT endpoint. This bit
also governs the IN endpoint data. An IN endpoint after a setup token with the data IN
stage will not be sent to the USB bus even when the VENDP bit is issued. Therefore, the
DSEN bit must be set for the ISP1582/83 to proceed to the status stage of the setup. The
status stage is achieved by setting the STATUS bit in the Control Function register. On
setting the STATUS bit, the endpoint will generate a zero-length packet to the IN token
and send an ACK for the OUT token. The status stage will not generate the control IN
endpoint interrupt.

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 17 of 45

3.1 Setup token with data IN stage
Start

Wait for the
setup token

interrupt

Setup
token interrupt

occurs

Initialize the
endpoint index

to the setup
endpoint by

using bit
EP0SETUP

Read the device
request from the

Data Port
register

Setup token
with data IN

Proceed to
other setup

token process

IN token
ACK interrupt

occur

Set the
STATUS bit of

the Control
Function

register to
terminate the
setup token
with data IN

End

No

Yes

No

Yes

Fill the IN endpoint
with the device
request data by
using the buffer

length or through the
VENDP bit of the
Control Function

register

When the buffer length is
used, the VENDP bit of the
Control Function register is
not required and vice versa.

It is not required to read the buffer
length of the setup token buffer because
all USB request is 8 bytes in length and
the setup FIFO is also 8 bytes in length

Initialize the
endpoint index
to the control IN

endpoint

Initialize the
endpoint index
to the control
OUT endpoint

Firmware
determines the

descriptor
length if greater

than
64 bytes

Fill IN endpoint
to 64 bytes

Next block
of data > 64 bytes

Wait for the
IN token ACK

interrupt

Fill the IN endpoint
with the partial data
and set the VENDP

bit of the Control
Function register

Yes

Yes

No

The buffer length and the
VENDP bit of the Control
Function register is not required
when data length is 64 bytes

No

Set the DSEN bit in the
Control Function
register to set the

ISP1582/83 to the data
stage mode

No

Yes

No OUT
endpoint
interrupt

generated for the
STATUS stage

Set the DSEN
bit of the Control

Function
register to

enable the data
stage

No

Descriptor
length >
64 bytes

Fig 7. Setup token with data IN stage.

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 18 of 45

3.2 Setup token with data OUT stage

Start

Wait for the setup
token interrupt

Setup
token interrupt

occurs

Initialize the
endpoint index to

the setup endpoint
by using bit
EP0SETUP

Read the device
request from the
Data Port register

Setup
token with data

OUT

Proceed to other
setup token

process

OUT token
ACK interrupt

occurs

Check the endpoint
data length by using

the Buffer Length
register and start
reading the OUT

data

Set the STATUS
bit of the Control
Function register
to terminate the
setup token with

data OUT

End

No

Yes

No

Yes

No

Check if all OUT
token is received

All OUT
received

No

Initialize the
endpoint index to

the control IN
endpoint

Yes

It is not required to read back the
buffer length of the setup token buffer
because all USB request is 8 bytes in
length and the setup FIFO is also 8
bytes in length

Initialize the
endpoint index to
the control OUT

endpoint

Set the DSEN bit
in the Control

Function register

Yes

No IN endpoint
interrupt

generated for
the status stage

Fig 8. Setup token with data OUT stage.

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 19 of 45

3.3 Setup token with no data stage

Start

Wait for the
setup token

interrupt

Setup
token interrupt

occurs

Initialize the
endpoint index to
the setup endpoint

by using bit
EP0SETUP

Read the device
request from the
Data Port register

Setup token
without data

Proceed to other
setup token

process

Set the STATUS bit of the
Control Function register

to terminate the setup
token without data

End

No

Yes

No

Initialize the endpoint
index to the control IN

endpoint

No IN endpoint interrupt
generated for the status

stage

It is not required to read back the buffer
length of the setup token buffer because all
USB request is 8 bytes in length and the
setup FIFO is also 8 bytes in length

Yes

Fig 9. Setup token with no data stage.

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 20 of 45

3.4 Stalling setup token
Start

Wait for the
setup token

interrupt

Setup
 token interrupt

occurs

Initialize the
endpoint index to

the setup
endpoint by

using bit
EP0SETUP

Read the device
request from the

Data Port
register

Setup token
not supported

Proceed to setup
token process

Set the STALL bit
of the Control

Function register
to stall the
endpoint

Host receives
stall and will

send the clear
feature request
to the device

Device
receive the

clear feature
token

Endpoint is
unstalled by
clearing the
STALL bit

Set the
Endpoint

Index register
to the stalled

endpoint

Disable and
enable by

clearing and
setting the

ENABLE bit in the
Control Function

register

Set the DMA
endpoint index to the
stalled endpoint and

issue a CLEAR
BUFFER command

to the DMA
Command register

End

No

Yes

Yes

No

Fig 10. Stalling setup token.

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 21 of 45

4. Mass storage application
After successful enumeration, the respective device drivers come into play. For a mass
storage application, the firmware must conform to the USB Mass Storage Class Bulk-
Only Transport Specification and the ATA/ATAPI protocol. The host sends 31 bytes
Command Block Wrapper (CBW). The ATAPI command is embedded in the CBW.

In the case of an ATAPI device, for each CBW received the ATAPI packet command is
issued to the device, followed by the ATAPI command in the CBW.

In the case of an ATA device, the ATAPI command in the CBW must be translated into
ATA command, before issuing to the device. The ATAPI command phase is followed by
an optional data phase, which is followed by a status phase. If the command is
successfully completed, the firmware has to report good status in the status field of the
13-byte Command Status Wrapper (CSW).

See Table 14: and Table 15: for CBW and CSW, respectively.

Table 14: Command Block Wrapper
Bit

Byte

7 6 5 4 3 2 1 0

30 to 15 (1Eh to 0Fh) CBWCB

14 (0Eh) reserved (0) bCBWCBLength

13 (0Dh) reserved (0) bCBWLUN

12 (0Ch) bmCBWFlags

11 to 8 (0Bh to 08h) dCBWDataTransferLength

7 to 4 dCBWTag

3 to 0 dCBWSignature

Table 15: Command Status Wrapper
Bit

Byte

7 6 5 4 3 2 1 0

12 (0Ch) bCSWStatus

11 to 8 (0Bh to 08h) dCSWDataResidue

7 to 4 dCSWTag

3 to 0 dCSWSignature

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 22 of 45

4.1 Mass storage protocol

Start

Check if the OUT
token is 31 bytes

CBW received?

Process the CBW
and issue command

to the drive

Data stage
required

Data IN or OUT
process

Report CSW with
error status

Determine the
status of the drive

Status error?

Report CSW with
good status

Yes

Yes

No

No

Bulk-only mass storage protocol ATA and ATAPI protocol

Stop

Yes

No

Fig 11. Mass storage protocol.

4.1.1 Extracting Command Block Wrapper
1. Initialize the Endpoint Index register to the respective OUT endpoint.
2. Read the Buffer Length register. A buffer length of 31 indicates a command packet is

in the buffer.
3. Read the Data Port register to extract the CBW.
4. Check for valid CBW signature in the command block.

If the CBW signature is valid, the command is issued to the ATA or ATAPI device.

For an invalid command block, the respective OUT endpoint is stalled.

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 23 of 45

4.1.2 Handling CBW for ATA and ATAPI device
1. Initialize the drive select register (1F6) to the master or slave, based on the device

present.
2. Initialize the Error or Feature register to 1 for a DMA transfer.
3. Initialize the ATAPI Byte Count LSB and ATAPI Byte Count MSB registers to the

number of bytes to be transferred as specified in the CBW.
4. The ATAPI packet command is issued to the device by writing the Command or

Status register.
5. Issue the 12-byte command block in CBW to the Task File Data register.
6. Check for the next phase.

If CBW.dCBWDataTransferLength is zero, then the next phase is status. If
CBW.dCBWDataTransferLength is non-zero and USB_CBW.bmCBWFlags is 0x80, then
the next phase is read. If CBW.dCBWDataTransferLength is non-zero and
USB_CBW.bmCBWFlags is not equal to 0x80, then the next phase is write.
7. The read or write phase is followed by the status phase.

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 24 of 45

Start

Initialize the Drive or Select register to master or
slave

Initialize the Error or Feature register to one for
DMA

Initialize ATAPI byte count LSB and MSB

Write the ATAPI packet command to the
Command or Status register

Write 12-byte command in CBW to the Task
File Data register

CBW.dCBWDataTransferLength
not equal to zero

Yes

CBW.bmCBWFlags == 0x80

ATAPI Read
Phase

ATAPI Write
Phase

ATAPI Status phase

Yes

No

No

Stop

Fig 12. Handling CBW for ATAPI device.

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 25 of 45

Start

Initialize the Endpoint Index register to the OUT
endpoint

Initialize the DMA Transfer Counter register to
CBW.dCBWDataTranferLength

Write to the DMA Command register with the DMA or
PIO write command

CMD_INTRQ_OK == 0
AND

INTRQ_PENDING == 0

Yes

No

Read the DMA transfer counter to check for partial
transfer

A nonzero value indicates partial transfer

CMD_INTRQ_OK == 0
AND

INTRQ_PENDING == 1

DMA Interrupt Reason register: bit allocation

Yes

Clear INTRQ_PENDING
Read the Command or Status Task

File register

Partial transfer
Yes

DMA Command
register = DMA_FLUSH

set transfer error flag

CMD_INTRQ_OK == 0

No
Yes

Clear CMD_INTRQ_OK

No

CMD_INTRQ_OK == 1
AND

INTRQ_PENDING == 1

No

Clear CMD_INTRQ_OK
Clear INTRQ_PENDING

Yes
Clear

CMD_INTRQ_OK

CMD_INTRQ_OK == 0
AND

INTRQ_PENDING == 0

No

Yes

No

Clear CMD_INTRQ_OK
Clear INTRQ_PENDING

Stop

Bits CMD_INTRQ_OK and
INTRQ_PENDING refrr to the

variable to which the DMA Interrupt
Reason register is copied in the

interrupt routine

Fig 13. ATAPI write phase.

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 26 of 45

Start

Initialize the Endpoint Index register to the IN
endpoint

Initialize the DMA Transfer Counter register to
CBW.dCBWDataTransferLength

Write to the DMA Command register with the DMA or
PIO Read command

CMD_INTRQ_OK == 0
AND

INTRQ_PENDING == 0

Yes

No

Read the DMA transfer counter to check for partial
transfer. A nonzero value indicates partial

transfer.

CMD_INTRQ_OK == 0
AND

INTRQ_PENDING == 1

DMA Interrupt Reason register: bit allocation

Yes

Clear INTRQ_PENDING
Read the Command or Status Task

File register

Partial transferYes

DMA command regiser
= DMA_FLUSH

set transfer error flag No

CMD_INTRQ_OK == 1
AND

INTRQ_PENDING == 1

No

Clear CMD_INTRQ_OK
Clear INTRQ_PENDING

Yes

Clear
CMD_INTRQ_OK

CMD_INTRQ_OK == 0
AND

INTRQ_PENDING == 0

No

Yes

No

Clear CMD_INTRQ_OK
Clear INTRQ_PENDING

Stop

CMD_INTRQ_OK
 == 0

Yes

Clear
CMD_INTRQ_OK

No

Bits CMD_INTRQ_OK and
INTRQ_PENDING are from a variable
to which the DMA Interrupt Reason
register is copied in the interrupt

routine

Fig 14. ATAPI read phase.

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 27 of 45

Start

Alternate Status or Device
Control Task File register

AND 0x01 == 1

Set Error_Occur flag Reset Error_Occur
flag

Stop

No
Yes

CMD_INTRQ_OK == 0
AND

INTRQ_PENDING == 0

Yes

INTRQ_PENDING == 1
AND

CMD_INTRQ_OK == 0

No

Clear INTRQ_PENDING
Read the Command or Status

Task File register

Yes
INTRQ_PENDING == 1

AND
CMD_INTRQ_OK == 1

Clear INTRQ_PENDING
Clear CMD_INTRQ_OK

Yes

Clear CMD_INTRQ_OK

No

INTRQ_PENDING == 1
AND

CMD_INTRQ_OK == 1

No

Yes

Clear INTRQ_PENDING
Clear CMD_INTRQ_OK

Read alternate Status or Device
Control Task File register

Bits INTRQ_PENDING and
CMD_INTRQ_OK refer to the variable to
which DMA Interrupt Reason register is

copied in the interrupt routine

Fig 15. ATAPI status phase.

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 28 of 45

4.1.3 Handling invalid CBW
A command block is invalid if it has an invalid CBW signature.
1. Initialize the Endpoint Index register to the respective OUT endpoint.
2. Set the STALL bit in the Control Function register. When the host receives a stall, it

will send a clear feature command. Wait for the setup token interrupt for the clear
feature.

3. Initialize the Endpoint Index register to the respective OUT endpoint, and clear the
STALL bit in the Control Function register.

4. Set and reset the ENABLE bit in the Endpoint Type register. This will reset the data
toggle.

5. Initialize the Endpoint Index register to 1 and set the STATUS bit in the Control
Function register

6. Wait till the EP0Tx interrupt is received.
7. Wait for the EP0SETUP interrupt, for the bulk-only mass storage reset command.
8. Initialize the Endpoint Index register, by setting the EP0SETUP bit in the Endpoint

Index register.
9. Read the Setup buffer and reinitialize the ATA or ATAPI device, for a valid mass

storage reset command.

4.1.4 Handling error
If the Error_Occur flag or transfer_error flag is set, error must be handled, by stalling the
respective endpoint involved in the transfer.

• For the data OUT transfer, the respective OUT endpoint is stalled.
• For the data IN transfer, the respective IN endpoint is stalled.
• Clear the Error_Occur and transfer_error flag.

4.1.5 Handling CBW for an ATA device
CBW contains the ATAPI command embedded in the command block.

For an ATA device, the ATAPI packet command must be translated into an ATA
command, before issuing to the device. The CBWCDB[0] field in the CBW contain the
ATAPI command and the remaining field contains the command parameters. Based on
the ATAPI command, the corresponding ATA command is selected and issued to the
device.

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 29 of 45

Start

Stop

Is CBWCDB[0] ==
INQUIRY CMD

Handle ATA inquiry

Is CBWCDB [0] ==
READ_10 CMD

Handle ATA READ_10

Is CBWCDB [0] ==
READ_CAPACITY CMD

Is CBWCDB [0] ==
READ_FORMAT_CAPACITIES CMD

Is CBWCDB [0] ==
REQUEST_SENSE CMD

Is CBWCDB [0] ==
START_STOP_UNIT/MODE_SENSE_06/

MODE_SELECT_06 CMD

Is CBWCDB [0] ==
 MODE_SENSE_10 CMD

Handle ATA
READ_CAPACITY

Handle ATA
READ_FORMAT-

CAPACITIES

Handle ATA
WRITE_10 CMD

Handle ATA
REQUEST_SENSE

Is CBWCDB [0] ==
WRITE_10 CMD

Is CBWCDB [0] ==
TEST_UNIT_READY CMD

B

B

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Handle ATA
MODE_SENSE_10

Yes

No

Handle ATA
MODE_SENSE_06

A

A

A

A

A

A

A

Yes

A

No

Yes

CBW.Length != 0 AND
CBW.dCBWFlags == 0x80

Error_Code.SENSE_KEY = 0
Error_Code.ASC = 0

Error_Code.ASCQ = 0
Reset Error_Occur flagNo

No

B

Initialize the Endpoint Index
register the IN endpoint
Validate the endpoint

Fig 16. Handling ATA Command Translator.

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 30 of 45

Start

Stop

Initialize the drive select Task File register to master or
slave based on the device present

Initialize the Endpoint Index register to the respective
IN endpoint

Initialize the DMA transfer counter = 512
Initialize the Byte count Task File register = 512

Issue ATA IDENTIFY DEVICE command by writing to
the Command or Status Task File register

Is
CBW.dCBWDataTransferLength

 == 6

Write values 0x00, 0x00, 0x00, 0x01, 0x1F,
0x00 to the Data Port register
Bytes_Transferred_Count =

CBW.dCBWDataTransferLength

YesNo

INTRQ_PENDING == 0
AND

CMD_INTRQ_OK == 0

Yes

No

INTRQ_PENDING = 0
CMD_INTRQ_OK = 0

DMA Command register = READ_1F0

READ_1F0 == 0

READ_1F0 = 0

Yes

No

Write to the Data Port register 0x00, 0x00, 0x00, 0x01,
0x1F, 0x00, 0x00, 0x00 and the Model number

Validate the data using VENP in the Control Function
register

Bytes_Transferred_Count =
CBW.dCBWDataTranferLength

Read to the Data Task File register (LSB) 512 times
and store the Model number in the identify device

Bits INTRQ_PENDING, CMD_INTRQ_OK
and READ_1F0 are from a variable to

which DMA Interrupt reason register is
copied in the interrupt routine

Fig 17. Handling ATA_INQUIRY.

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 31 of 45

Start

Stop

Is CBW.dCBWFlags == 0

Initialize the Endpoint Index
register to the respective OUT

endpoint

DMA Transfer Counter
register = Atapi_Bytecount

Initialize the Endpoint Index
register to the respective IN

endpoint

YesNo

INTRQ_PENDING == 0
AND

CMD_INTRQ_OK == 0

DMA command register =
MDMA_Read_command

DMA command register =
MDMA_Write_command

Is CBW.dCBWFlags == 0 YesNo

Yes

No

Read the DMA Transfer Counter
register to check partial transfer
Byte_Transfered_Count = DMA

Transfer Counter register

INTRQ_PENDING == 1
AND

CMD_INTRQ_OK == 0
INTRQ_PENDING = 0

Read the Command or Status Task File
register

Yes

Byte_Transfered_Count
!= 0 AND

CBW.dCBWFlags == 0x80

Issue the DMA
FLUSH command

to the DMA
Command register
Set Transfer_Error

flag

CMD_INTRQ_OK == 0

YesNo

CMD_INTRQ_OK = 0

INTRQ_PENDING == 1
AND

CMD_INTRQ_OK == 1

NoINTRQ_PENDING = 0
AND

CMD_INTRQ_OK = 0

Yes

No

CMD_INTRQ_OK = 0

No

INTRQ_PENDING == 0
AND

CMD_INTRQ_OK == 0

Yes

INTRQ_PENDING == 0
AND

CMD_INTRQ_OK == 0

No

Yes

ATAPI_Bytecount = 0

Bits CMD_INTRQ_OK and
INTRQ_PENDING refer to the

variable to which the DMA
Interrupt Reason register is

copied in the interrupt routine

Fig 18. Handling ATA_DATA_TRANSFER.

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 32 of 45

Start

Stop

Sector_Count = CBW.CDB[7]
Endpt_FIFO =

CBW.dCBWDataTransferLength

Atapi_ByteCount = 512
CBW.dCBWDataTransferLength =

CBW.dCBWDataTransferLength - 512
Interrupt Reason Task File register = 0

Sector_Count != 0

CBW.Length != 0

Atapi_ByteCount = CBW.dCBWDataTransferLength
Interrupt Reason Task File register = CBW.CDB[8]

Set Transfer_Done flag

Yes

Yes

Sector Number Task File register = CBW.CDB[5]
Byte count LSB Task File register = CBW.CDB[4]
Byte count MSB Task File register = CBW.CDB[3]

Is master ATA drive

Drive Select Task File register =
MASTER | LBA_MODE |

CBW.CDB[2]

Drive Select Task File register =
SLAVE | LBA_MODE |

CBW.CDB[2]

Yes
No

Command Status Task File register =
ATA READ_DMA command

Auto_PIO = 0
MDMA_Mode = 1
UDMA_Mode = 0

Handle ATA Data Transfer

Sector_Count = Sector Count - 1
CBW.CDB[4] = CBW.CDB[4] + 1

Transfer_Done == 0
AND

Transfer_Error == 0

Reset Transfer_Done flag
CBW.dCBWDataTransferLength =

Endpt_FIFO

Transfer Error == 1

Prev_State =
ATAPI_Read Phase

Yes

No

Byte Transfered Count =
CBW.dCBWDataTransferLength

No

No

Yes

No

A

A

Fig 19. Handling ATA_READ_10.

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 33 of 45

Start

Initialize the Endpoint Index register to the
respective IN endpoint

Buffer length LSB Task File register = 8
Buffer length MSB Task File register = 0

Write to the Data Port register 4 bytes of
Drive_Setup.LBA[0-3]: 0x00, 0x00, 0x02, 0x00

Byte_Transfered_Count =
CBW.dCBWDataTransferLength

Stop

Fig 20. Handling ATA READ CAPACITY.

Start

Initialize the Endpoint Index register to the
respective IN endpoint

Buffer Length LSB Task File register = 12
Buffer Length MSB Task File register = 0

Write these values to Data Port register
0x00, 0x00, 0x00, 0x08, Drive_Setup.LBA[0-3],

0x00, 0x00,0x02, 0x00

Byte_Transfered_Count = 12
Prev_State = ATAPI_status phase

Set Transfer_Error flag

Stop

Fig 21. Handling ATA READ_FORMAT_CAPACITIES.

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 34 of 45

Start

Initialize the Endpoint Index register to the
respective IN endpoint

Write these values to the Data Port register:
0x70, 0x00, Error_Code.SENSE_KEY,

0x00, 0x00, 0x00, 0x00, 0x0A, 0x00, 0x00,
0x00, 0x00,Error_Code.ASC,

Error_Code.ASCQ,
0x00, 0x00, 0x00, 0x00

Validate the buffer using the Control
Function register bit VENDP
Byte_Transfered_Count =

CBW.dCBWDataTransferLength

Stop

In the 8-bit mode, write to the LSB and
then the MSB of the Data Port register

Fig 22. Handling ATA REQUEST_SENSE.

Start

 Initialize the Endpoint Index register
to the respective IN endpoint

Write the following values to the Data
Port register:

0x2A, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00

Validate the buffer BY using bit
VENDP in the Control Function

register

Byte_Transfered_Count =
CBW.dCBWDataTransferLength

Stop

Fig 23. Handling ATA MODE_SENSE_10.

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 35 of 45

Start

Error_Code.SENSE_KEY = 5
Error_Code.ASC = 0x24
Error_Code.ASCQ = 0

Set Error_Occur flag
Prev_State =

ATAPI_Cmd_Packet_Phase

Byte_Transfered_Count = 0

Stop

Fig 24. Handling ATA MODE_SENSE_06.

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 36 of 45

Start

Stop

Sector_Count = CBW.CDB[7]
Endpt_FIFO =

CBW.dCBWDataTransferLength

Atapi_ByteCount = 512
CBW.dCBWDataTransferLength =

CBW.dCBWDataTransferLength - 512
Interrupt Reason Task File register = 0

Sector_Count != 0

CBW.Length != 0

Atapi_ByteCount = CBW.dCBWDataTransferLength
Interrupt Reason Task File register = CBW.CDB[8]

Set Transfer_Done flag

Yes

Yes

Sector Number Task File register = CBW.CDB[5]
Byte count LSB Task File register = CBW.CDB[4]
Byte count MSB Task File register = CBW.CDB[3]

Is master ATA drive

Drive Select Task File register =
MASTER | LBA_MODE | CBW.CDB[2]

Drive Select Task File register =
SLAVE | LBA_MODE |

CBW.CDB[2]

Yes

No

Command Status Task File register =
ATA WRITE_DMA command

Auto_PIO = 0
MDMA_Mode = 1
UDMA_Mode = 0

Handle ATA Data Transfer

Sector_Count = Sector Count - 1
CBW.CDB[4] = CBW.CDB[4] + 1

Transfer_Done == 0
AND

Transfer_Error == 0

Reset Transfer_Done flag
CBW.dCBWDataTransferLength =

Endpt_FIFO
Byte_Transfered_Count =

CBW.dCBWDataTransferLength

No

No

Yes

A

ANo

Fig 25. Handling ATA WRITE_10.

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 37 of 45

5. GDMA application
The GDMA application supports the GDMA slave and the PIO modes. These modes are
selected based on the vendor-specific command issued by the host. The host sends an
8-byte setup packet, followed by a 6-byte vendor-specific information. The number of
bytes to be transferred, the direction of transfer, and the mode of transfer are embedded
in the vendor-specific command.

Start

Stop

USB_Device_Request.bmRequestType ==
vendor_specific (0xC0, 0x40, 0xA1, 0x21)

USB_Device_Request.bRequest == 0x0C
AND

USB_Device_Request.bmRequestType == 0x40

Initialize the Endpoint Index register
to 1

Stall the endpoint by setting bit
STALL in the Control Function

register

EP0SETUP == 0

Reset bit EP0Tx in the
copy of the Interrupt

Reason register

Standard USB
Request

No

Yes

USB_Device_Request.wIndex == 0x7104

USB_Device_Request.wIndex == 0x7204

Yes

No

No

Handle the
GDMA Start
command

Handle the
GDMA Stop
command

Yes

Yes

Yes

No

No

Format of Setup data

Bit EP0Tx is from a variable to
which the Interrupt Enable register
is copied in the interrupt routine

Fig 26. GDMA flowchart.

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 38 of 45

Initialize the Endpoint Index register to 0
Set bit DSEN in the Control Function

register

Wait for OUT token ACK
EP0Rx == 0

Clear EP0Rx bit
Initialize the Endpoint Index register to 0

Read the 6-byte vendor-specific
information from the Data Port
register into variable FileSize

Stop

Start

Yes

No

Initialize the Endpoint Index register
to 1

Set bit STATUS in the Control
Function register

FileSize.Size == 0

Reset Out_Reset_Done flag
Reset IN_Reset_Done flag

Yes

No

FileSize.DIR == 0x00
OR

FileSize.DIR == 0x80

Handle PIO/GDMA
Write

Handle PIO/GDMA
Read

Yes

No

Bit EP0Rx is from the variable to
which the Interrupt Reason register

is copied in the interrupt routine

Fig 27. Handling GDMA start command.

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 39 of 45

Start

Stop

DMA_Test_Mode != PIO

Stop the CPLD DMA controller
Reset the CPLD DMA controller

Initialize the CPLD DMA
controller for the Slave Read

mode

Handle
PIO_Write

Yes

Is master mode

Initialize the CPLD DMA
controller for the Master Write

mode
Initialize the CPLD DMA counter

to FileSize.SIze

Yes

No

Set the CPLD DMA mode

Initialize the DMA Endpoint register to the
respective OUT endpoint

Initialize the Endpoint Index register to a value
not equal to the DMA Endpoint register
Initialize the DMA transfer counter to

FileSize.Size

No

DMA_Test_Mode == GDMA

DMA_Test_Mode == MDMA

No

No

DMA command register =
GDMA_Write command

DMA command register =
MDMA_Write command

Yes

Yes

DMA_XFER_OK == 0
AND

INT_EOT == 0

Reset internal variable
DMA_XFER_OK = 0

INT_EOT = 0

No

SUSP ==1 OR
BUS_RESET ==1 OR

 EP0SETUP ==1

Write to the DMA command
register with DMA_REST

Reinitialize the DMA

Yes

Yes

No

Bits DMA_XFER_OK and INT_EOT
are from the variable to which the
DMA Interrupt Reason register is

copied in the interrupt routine

Bits SUSP and EP0SETUP are
from the variable to which the

Interrupt reason register is
copied in the interrupt routine

BUS_RESET is a flag

Fig 28. Handling PIO or GDMA write.

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 40 of 45

Start

Stop

DMA_Test_Mode != PIO

Stop the CPLD DMA
controller

Reset the CPLD DMA
controller

Initialize the CPLD DMA controller
for the Slave Write mode

Handle
PIO_Read

Yes

Is master mode

Initialize the CPLD DMA
controller for the Master

Read mode
Initialize the CPLD DMA
counter to FileSize.SIze

Yes

No

Set CPLD DMA mode

Initialize the DMA Endpoint register to
the respective IN endpoint

Initialize the Endpoint Index register
to value not equal to the DMA

Endpoint register
Initialize the DMA transfer counter to

FileSize.Size

No

DMA_Test_Mode == GDMA

DMA_Test_Mode == MDMA

No

No

DMA command register =
GDMA_Read command

DMA command register =
MDMA_Read command

Yes

Yes

DMA_XFER_OK == 0

Reset internal variable
DMA_XFER_OK = 0

No
SUSP ==1 OR

BUS_RESET ==1 OR
 EP0SETUP ==1

Write to the DMA command
register with DMA_REST

Reinitialize the DMA

Yes

Yes

No

Bit DMA_XFER_OK is from
the variable to which the DMA

Interrupt reason register is
copied in the interrupt routine

Bits SUSP and EP0SETUP are
from the variable to which the

Interrupt reason register is
copied in the interrupt routine

BUS_RESET is a flag

Fig 29. Handling PIO or GDMA read.

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 41 of 45

Enable the CPLD PIO mode
Issue the CPLD PIO Reset command

Initialize the Endpoint Index register
to the respective OUT endpoint

Is the device
full-speed

This_tranfer_size =
PIO_MaxPacketSize

PIO_Bytes_remaining - =
PIO_MaxPacketSize

Start

PIO_maxpacket_size = 64

PIO_maxpacket_size = 512

No

Yes

PIO_Bytes_Remaining =
FileSize.Size

PIO_Bytes_Remaining != 0

PIO_Bytes_Remaining
 >

PIO_MaxPaketSize
Yes

This_tranfer_size =
PIO_Bytes_remaining

PIO_Bytes_Remaining = 0

No

Yes

A

A

This_buffer_remain =
This_transfer_size

This_buffer_remain

This_buffer_remain > 64

This_buffer_size = 64
This_buffer_remain - = 64

This_buffer_size =
This_buffer_remain

This_buffer_remain = 0

Yes

No

Count_PIO = 0

Read the Data Port register LSB to the internal RAM
Increment Count_PIO

Read the Data Port register MSB to the internal RAM
Increment Count_PIO

Count_PIO
 <

this_buffer_size

CPLD PIO Write LSB from the internal RAM
Increment Count_PIO

CPLD PIO Write MSB from the internal
RAM

Increment Count_PIO

Count_PIO
 <

this_buffer_size

Yes

Count_PIO = 0

No

Buffer Staus
register == 0

SUSP OR
EP0SETUP OR
BUS_RESET

Yes

No

No

Yes

Yes

SUSP OR
BUS_RESET

No

Yes

Stop

BNo

B

Yes

C

CNo

D No

D

Bits EP2Rx, SUSP
and EP0SETUP are
from the variable to
which the Interrupt
Reason register is

copied in the
interrupt routine

BUS_RESET is
a flag which is

set on
BUS_RESET

interrupt

Fig 30. Handling PIO write.

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 42 of 45

Enable the CPLD PIO mode
Issue the CPLD PIO Reset

command

Initialize the Endpoint Index
register to the respective IN

endpoint

Is the device
full-speed?

This_tranfer_size =
PIO_MaxPacketSize

PIO_Bytes_remaining - =
PIO_MaxPacketSize

Start

PIO_maxpacket_size =
64

PIO_maxpacket_size =
512

No

Yes

PIO_Bytes_Remaining =
FileSize.Size

PIO_Bytes_Remaining != 0

PIO_Bytes_Remaining
 >

PIO_MaxPaketSize
Yes

This_tranfer_size =
PIO_Bytes_remaining

PIO_Bytes_Remaining = 0

No

Yes

A

Count_PIO = 0

CPLD PIO Read LSB to the internal RAM
Increment Count_PIO

CPLD PIO Read MSB to the internal RAM
Increment Count_PIO

Count_PIO
 <

this_buffer_size

Write to the Data Port register LSB from the internal
RAM

Increment Count_PIO
Write to the Data Port register MSB from the

internal RAM
Increment Count_PIO

Count_PIO
 <

this_buffer_size

Yes

Count_PIO = 0

No

Yes

SUSP OR
BUS_RESET

No

Stop

BNo

BC

D

D

Bits SUSP and
EP0SETUP are from

the variable into
which the Interrupt
Reason register is

copied in the
interrupt routine

BUS_RESET is a flag
which is set on the

BUS_RESET interrupt

This_transfer_size
 <

PIO_MaxPacketSize

No

Validate the buffer by setting bit
VENDP in the Control Function

register for short packet

Yes

No

This_buffer_remain =
This_transfer_size

This_buffer_remain

Yes

CNo

This_buffer_remain > 64

This_buffer_size = 64
This_buffer_remain - = 64

This_buffer_size =
This_buffer_remain

This_buffer_remain = 0

Yes

No

A

Yes

Wait if the Buffer Status register == 3
(exit on SUSP, BUS_RESET,

EP0SETUP)

Fig 31. Handling PIO read.

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 43 of 45

Initialize the Endpoint Index register to 0
Set bit DSEN in the Control Function

register

Wait for OUT token ACK
EP0Rx == 0

Clear EP0Rx bit
Initialize the Endpoint Index register to 0

Read the 6-byte vendor-specific
information from the Data Port register

into variable FileSize

Stop

Start

Yes

No

Initialize the Endpoint Index register to 1
Set bit STATUS in the Control Function

register

Bit EP0Rx is from the variable
to which the Interrupt Reason

register is copied in the
interrupt routine (Exit the loop

on SUSP or RESUME)

Fig 32. Handling GDMA Stop command.

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 02 — 3 January 2005 44 of 45

6. Disclaimers
Life support — These products are not designed for use in life support
appliances, devices, or systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips Semiconductors
customers using or selling these products for use in such applications do so
at their own risk and agree to fully indemnify Philips Semiconductors for any
damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to
make changes in the products - including circuits, standard cells, and/or
software - described or contained herein in order to improve design and/or
performance. When the product is in full production (status ‘Production’),
relevant changes will be communicated via a Customer Product/Process
Change Notification (CPCN). Philips Semiconductors assumes no

responsibility or liability for the use of any of these products, conveys no
licence or title under any patent, copyright, or mask work right to these
products, and makes no representations or warranties that these products
are free from patent, copyright, or mask work right infringement, unless
otherwise specified.

Application information — Applications that are described herein for any of
these products are for illustrative purposes only. Philips Semiconductors
make no representation or warranty that such applications will be suitable for
the specified use without further testing or modification.

7. Trademarks
SoftConnect — is a trademark of Koninklijke Philips Electronics N.V.

Philips Semiconductors AN10039
 ISP1582/83 Firmware Programming Guide

 © Koninklijke Philips Electronics N.V. 2005
All rights are reserved. Reproduction in whole or in part is prohibited without the prior
written consent of the copyright owner. The information presented in this document does
not form part of any quotation or contract, is believed to be accurate and reliable and may
be changed without notice. No liability will be accepted by the publisher for any
consequence of its use. Publication thereof does not convey nor imply any license under
patent- or other industrial or intellectual property rights.

Date of release: 3 January 2005

Published in The Netherlands

8. Contents
1. Introduction ...3
2. ISP1582/83 initialization routine.........................4
2.1 Initializing the ISP1582/83 registers....................4
2.2 Initializing the Mode register4
2.3 Initializing the Interrupt Configuration register.....5
2.4 Initializing the Interrupt Enable register7
2.5 Initializing the DMA Configuration and Hardware
registers ...8
2.6 Initializing the ISP1582/83 endpoint..................11
3. ISP1582/83 USB enumeration process............15
3.1 Setup token with data IN stage17
3.2 Setup token with data OUT stage18
3.3 Setup token with no data stage.........................19
3.4 Stalling setup token...20
4. Mass storage application..................................21
4.1 Mass storage protocol.......................................22
4.1.1 Extracting Command Block Wrapper22
4.1.2 Handling CBW for ATA and ATAPI device........23
4.1.3 Handling invalid CBW28
4.1.4 Handling error ...28
4.1.5 Handling CBW for an ATA device28
5. GDMA application ...37
6. Disclaimers ..44
7. Trademarks ..44
8. Contents...45

	Introduction
	ISP1582/83 initialization routine
	Initializing the ISP1582/83 registers
	Initializing the Mode register
	Initializing the Interrupt Configuration register
	Initializing the Interrupt Enable register
	Initializing the DMA Configuration and Hardware registers
	Initializing the ISP1582/83 endpoint

	ISP1582/83 USB enumeration process
	Setup token with data IN stage
	Setup token with data OUT stage
	Setup token with no data stage
	Stalling setup token

	Mass storage application
	Mass storage protocol
	Extracting Command Block Wrapper
	Handling CBW for ATA and ATAPI device
	Handling invalid CBW
	Handling error
	Handling CBW for an ATA device

	GDMA application
	Disclaimers
	Trademarks
	Contents

